Hall Ticket Number :										

R-14

II B.Tech. II Semester Regular Examinations May 2016

Formal Languages and Automata Theory

(Computer Science \& Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define automaton. Explain the difference between NFA and DFA with the suitable example
b) Design a DFA that accepts the language of all strings with even number of a's and number of b's divisible by 3 over the alphabet $\sum=\{a, b\}$

OR

2. a) Explain the procedure to convert NFA with $€$ moves to NFA without $€$ moves with suitable example
b) Construct the melay machine that generates 2 's complement of the given input over $\sum=\{0,1\}$ and convert the same to moore machine

UNIT-II

3. a) List any 6 Identity rules of the regular expression and write the closure properties of the regular sets.
b) Construct a NFA for regular expression (a+b)*abb and draw its equivalent DFA. 7M

OR

4. a) Construct DFA equivalent to the Regular expression $(0+1)^{*}(00+11)(0+1)^{*}$
b) Find the regular expression accepted by the following DFA

State $/ \sum$	A	b
$\rightarrow \mathrm{A}$	A	B
B	A	C
C	C	B

Where A is the initial state and C is the final state

UNIT-III

5. a) Constuct the CFG for the following languages defined over $\{a, b\}$
i) $\quad L=\left\{a^{n} b^{m} c^{m} d^{n} / n, m>=1\right\}$
ii) L is a language that accepts all the strings that start and end with same symbol
b) State and Explain the Pumping lemma for the context free languages

OR

6. a) Reduce the following CFG $G=\{\{S, A, B, E, C\},\{a, b, c\}, P, S\}$
P contains,
$S \rightarrow A B$
$A \rightarrow a$
$B \rightarrow b$
$B \rightarrow C$
$\mathrm{E} \rightarrow \mathrm{c} \mid €$
b) Convert the following CFG to GNF G=\{\{E,T,F\},\{a\},P,E\} P contains
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{a}$

UNIT-IV

7 a) Design a PDA for the language $L=\left\{a^{n} b^{m} c^{m+n} / n, m>=1\right\}$
5M
b) Explain the process of constructing PDA from the given grammar and Construct PDA that accepts the CFG $g=\{\{S, A, B, C\},\{a, b, c\}, P, S\} p$ is defined as, $S \rightarrow a A$
$A \rightarrow a A B C|b B| a$
$B \rightarrow b$
$C \rightarrow c$

OR

8 a) Design a PDA for $L=\left\{W^{R} / W=\{a, b\}^{*}\right\}$ where W^{R} represents reverse string
b) Explain the process of converting PDA to CFG with suitable example

UNIT-V

9 a) Explain church's hypothesis.
b) Design a Turing machine for the language $L=\left\{a^{n} b^{n} c^{n} / n>=1\right\}$

OR

10 a) Construct a Turing machine to accept the following language and give its state transition table and diagram. Check the machine by tracing a suitable string or instance. $L=\left\{a^{n} b^{n} a^{n} b^{n} / n>=1\right\}$
b) Discuss different languages and their corresponding machines 7M

II B.Tech. II Semester Regular Examinations May 2016

Environmental Science

(Common to CE, ME and CSE)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Enumerate four conceptual spheres in the earth's environment.
b) Explain briefly the importance of Environmental studies and need for public awareness?

OR

2. a) Define and explain scope of environmental studies?
b) Explain role of an individual in promoting environmentalism?

UNIT-II

3. a) Explain the importance of forests in maintaining ecological balance and in providing economical and commercial services?
b) Explain the food problems of India and World

OR

4. a) Write a note on possible conflicts over water, giving examples of Indian and Global context.
b) Explain role of an individual in conservation of natural resources

UNIT-III

5. a) What are the three different types of ecological Pyramids? Explain
b) Define and explain "River" ecosystem?

OR

6. a) Explain the concept of "food chain" and "food web"?
b) Comment on Indian biodiversity with special reference as a mega diversity nation?

UNIT-IV

7. a) Explain the major water pollutants and their effect on the Environment?
b) Briefly describe sources, effects and control of Noise pollution?

OR

8. a) Discuss briefly any two Global effects of Air Pollution.
b) Describe various effects and control measures of Thermal pollution?

UNIT-V

9. a) Enumerate and Explain rainwater harvesting methods
b) Explain the evolution of family welfare programs in India?

OR

10. a) Explain environmental consequences of unethical behavior of human population?
b) Discuss objectives and elements of value education?
\square

II B.Tech. Il Semester Regular Examinations May 2016

Computer Organization

(Common to CSE \& IT)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Simplify the Boolean function $f(w, x, y, z)=\sum(0,5,11,14)$ and give the circuit realization of this function using logic gates.
b) Explain the function of a 3 to 8 line decoder using its associated signals and
truth table.

OR

2. a) List the techniques used to represent negative numbers in binary. Compare and contrast among them in terms of the range of numbers, considering N bits are used to represent a number.
b) State the limitations of using parity bit to detect errors. Explain the features of
Hamming codes to locate the presence of errors.

UNIT-II

3. a) What is a three-state buffer? Design a decoder and three-state buffer logic to implement multiplexing the least significant bit of 6 registers of a CPU onto a common bus line.
b) The 8-bit registers AR and BR, respectively are initialized with 10011001 and 00011110. Determine the values of each registers after executing the following sequence of micro-operations:
$A R \leftarrow A R \oplus B R$
$B R \leftarrow A R \oplus B R$
$A R \leftarrow A R \oplus B R$

OR

4. a) State and explain the phases of an instruction cycle of basic computer architecture.
b) Differentiate between an interrupt cycle and instruction cycle.

UNIT-III

5. a) Explain the functional units of a microprogrammed control unit.
b) Discuss in detail the various fields of a microinstruction format and specify the control memory size.

OR

6. a) State the pros and cons of microprogrammed control unit over hardwired control unit.

[^0]UNIT-IV
7. a) Bring out the features of Booth's algorithm for multiplication. Explain the dataflow among the functional units of a hardware implementation of Booth'salgorithm.10M
b) Explain the terms 'mantissa' and 'exponent' with suitable examples. State the advantage of using biased exponent. 4M
OR
8. a) Explain the hierarchy of memory subsystem of a computer organization. 4M
b) What is the use of 'tag' and 'index' fields in a cache memory organization? Assume a cache memory of size 1 K words is to be mapped with 1 MB of physical address space. Determine the number of bits required for address the main memory and hence the number of bits for tag and index fields. 10M
UNIT-V9. a) State the advantages and disadvantages of isolated I/O mapping whencompared to memory mapped I/O.4M
b) List and describe the features of data transfer schemes between I/O and CPU. 10M
OR10. a) State the advantages of instruction pipelining. Describe the difficulties that mayarise due pipelining and cite the techniques to handle the same.7M
b) Explain the organization of SIMD array processor. 7M
\square

I| B.Tech. II Semester Regular Examinations May 2016 Software Engineering

(Common to CSE \& IT)

Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-II

Abstract

1 a) For the scenario described below, which life cycle model would you choose? Give the reason why you would choose this model. You are interacting with the MIS department of a very large pharmaceutical company with multiple departments. The have a complex legacy system. Migrating the data from this legacy system is not an easy task and would take a considerable time. The pharmaceutical company is very particular about processes, acceptance criteria and legal contracts.

b) List out any five benefits of software engineering 5 M

OR

2. a) A Coffee Vending Machine dispenses coffee to customers. Customers order coffee by selecting a recipe from a set of recipes. Customers pay for the coffee using coins. Change is given back, if any, to the customers. The 'Service Assistant' loads ingredients (coffee. powder, milk, sugar, water, chocolate) into the coffee machine.
The 'Service Assistant' adds a recipe by indicating the name of the coffee, the units of coffee powder, milk, sugar, water and chocolate to be added as well as the cost of the coffee. The Service Assistant can also edit and delete a recipe. Develop the use case diagram for the specification above.
a) For any two scenarios draw an activity diagram and sequence diagram.

UNIT-II

3. a) What are the components of the standard structure for the software
requirements document? Explain in detail. 9 M
b) Write the software requirement specification of a distributed airline reservation system.

OR

4. a) Differentiate verification and validation. Give an example. 8 M
b) Name the metrics for specifying Non-functional requirements. 6M

UNIT-III

5. a) Explain clearly the concepts of pattern based software design. 9M
b) Distinguish between class based and conventional components design 5M

OR
6. a) Explain Structured Analysis Design Tool (SADT) 7M
b) Design a SADT 7M
UNIT-IV
7. Write short notes on
a) Architecture design. 7M
b) Data acquisition system. 7M
OR
8. a) With a neat sketch draw the architecture model for an integration framework for CASE tool and explain them. 9M
b) Design a black box testing for an Under Water submarine 5M
UNIT-V
9. a) Elaborate on Software Configuration Management 7M
b) Write short notes on COCOMO estimation criteria. 7M
OR
10. a) Write a software review for a product. 8M
b) Write a note on the ISO 9000 quality standards. 6M

II B.Tech. II Semester Regular Examinations May 2016 Database Management Systems

(Common to CSE \& IT)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Compare and contrast file systems with database systems.
b) Define instances and schemas of database?

OR

2. a) Explain about types of database languages with syntax and example?
b) Explain different types of database users and write the functions of DBA? 7M

UNIT-II

3. a) Distinguish strong entity set with weak entity set? Draw an ER diagram to
illustrate weak entity set?
b) Discuss about the concept design with the ER Model? 7M

OR
4. a) Discuss about the logical database design? 7M
b) Explain about different types of integrity constraints? 7M

UNIT-III

5. a) Explain about union and intersect operator
i. Write a query to find the names of sailors who have reserved boat 103 and color is green.
ii. Write a query to find the names of sailors who have reserved a red or a green boat.
b) Explain briefly about joins and its types with examples? 7M

OR
6. a) Discuss different types of aggregate operators with examples in SQL?
b) Discuss about active databases and write an example for trigger? 7M

UNIT-IV

7. a) Illustrate redundancy and the problems that it can cause?
b) Explain about properties of decomposition?

OR

8. a) Explain about schema refinement in database design? 6M
b) Compare and contrast BCNF with 3NF? 8 M

UNIT-V

9. a) Explain ACID properties and Illustrate them through examples? 7M
b) Illustrate concurrent execution of transaction with examples? 7M

OR
10. a) Compare I/O costs for all file organizations? 6 M
b) Explain B+ trees? Discuss about this dynamic index structure? 8 M

[^0]: b) Describe the organization and functions of a microprogram sequencer for control memory.

