Hall ⁻	Ticke	et Number :							
		R-15							
Code	9. 5G	II B.Tech. II Semester Regular Examinations May 2017							
		Analog Communication							
		(Electronics and Communication Engineering)							
-		arks: 70 er all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	rs						
		UNIT–I							
1.	a)) Define modulation. What do you mean by frequency translation?							
	b)	The positive RF peaks of an AM voltage rise to a maximum value of 12 V and drop to a minimum value of 4 V. What is the modulation index?	ЗN						
	c)	A modulating signal given by							
		$m(t) = 2\sin(2f \times 500t) + 3\sin(2f \times 1100t) + 5\sin(2f \times 1300t)$ amplitude							
		modulates a carrier given by $c(t) = 10 \sin(2f \times 10^6 t)$, where all amplitudes are							
		in volts. Determine i. The total modulation index							
		ii. The frequencies present in the modulated signal.							
		iii. The total transmitted power.	9N						
		OR							
2.	a)	Derive an expression for single-tone amplitude modulated wave. Also draw its							
	,	spectra.	6N						
	b)	Explain briefly the working principle of balanced modulator	6N						
	c)	Write the advantages of SSB-SC modulation	2N						
		UNIT–II							
3.	a)	An FM wave is given by $s(t) = 10\cos(16f \times 10^6 t + 20\sin 2f \times 10^3)$. Determine							
		i. The carrier and modulating frequency							
		ii. The modulation index and maximum deviation.							
		iii. Power dissipated by this FM wave in a 100 ohm resister	6N						
	b)	Explain with suitable diagram, how the Narrow band FM signal may be generated.	6N						
	c)	What is the theoretical bandwidth required for Narrowband FM transmission? Justify.	2N						
		OR							
4.	a)	Compare AM and Narrowband FM	4N						
	b)	Between AM and FM which is more noise immune? Why?	2N						
	c)) A message signal x(t)=100sin(2000)t frequency modulates a carrier signal $C(t) = 200\cos(2f \times 10^8)t$ with a modulation index of 5. Find							
		I. Write down the expression for FM signal.							
		II. What is the peak frequency deviation?							
		III. What is the average power of the modulated signal?							
		IV. What is bandwidth of the modulated signal?	8N						
		Page 1 d	of 2						

		UNIT–III	
5.	a)	Explain SNR in analog communication system.	4M
	b)	Give the calculation of signal power and noise power in SSB-SC AM system.	8M
	C)	What is white in white noise?	2M
		OR	
6.	a)	Differentiate between pre-emphasis and de-emphasis.	4M
	b)	Does the reduction in frequency range improve SNR in both SSB and DSB-SC reception? Why?	4M
	c)	What is the threshold effect of FM signal.	6M
		UNIT–IV	
7.	a)	Explain Variable reactance type and phase modulated FM Transmitter	8M
	b)	Explain briefly about radio transmitter.	6M
		OR	
8.	a)	Draw the block diagram of super heterodyne receiver and explain the importance of intermediate frequency.	8M
	b)	Explain how frequency stability in FM Transmitter is achieved.	6M
		UNIT–V	
9.	a)	What is pulse modulation? Explain its advantages over continuous wave modulation. Discuss the application of pulse modulation. Enumerate the types	
		of pulse modulation.	7M
	b)	Describe the operation of PWM and PPM technique.	7M
		OR	
10.	a)	Write a short note on time division multiplexing	7M
	b)	Explain how multiple channels are multiplexed using FDM. Draw appropriate sketches.	7M

Hall	Hall Ticket Number : R-15									
Code: 5GC41										
II B.Tech. II Semester Regular Examinations May 2017 Complex Variables & Special Functions										
(Common to EEE & ECE)										
Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)										
	******* UNIT–I									
1. a)	Show that $s(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$									
		7M								
b)	If $\tan(x+iy) = A+iB$, show that $A^2 + B^2 + 2A\cot 2x = 1$	7M								
	OR									
2. a)	Given that $\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)} dx = \frac{f}{\sin nf}$ Show that	7M								
	$\Gamma(n)\Gamma(1-n) = \frac{f}{\sin nf}$ for $0 < n < 1$ and hence find $\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)$									
b)	Find the real and imaginary parts of $\ln \cos(x + iy)$.	7M								
	UNIT–II									
3. a)	State and prove Cauchy-Reimann equations in Cartesian form.	7M								
b)	If $v(r, y) = \left(r - \frac{1}{r}\right) \sin y$, $r \neq 0$, then find an analytic function $f(z) = u + iv$.	7M								
	OR									
4.	Determine an analytic function $f(z) = u + iv$, if $u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)}$ and									
	$f\left(\frac{f}{2}\right) = 0.$	14M								
	UNIT-III									
5. a)	Evaluate $\int_{c} \frac{\cos f z}{z^2 - 1} dz$, using Cauchy's integral formula around a rectangle with									
	vertices $2 \pm i, -2 \pm i$.	7M								
b)	Expand $f(z) = \frac{(z-1)}{(z+1)}$ in Taylor's series about the point $z = 1$.	7M								
	OR									

6. a) Evaluate $\int_{c} |z|^2 dz$ around the square with vertices at (0,0), (1,0), (1,1) (0,1) 8M

b) Expand $f(z) = \frac{z}{(z-1)(z-3)}$ for |z-1| < 2. 6M

Code: 5GC41

UNIT-IV

7. a) Using Cauchy's residue theorem, evaluate $\int_{c} \frac{e^{2z}}{(z+1)^4} dz$, where c is the circle |z| = 2 7M

b) Use Rouche's theorem to solve $p(z) = z^4 - 5z + 1$, annulus region 1 < |z| < 2. 7M

OR

8. a) Evaluate
$$\int_{c} \frac{(z-3)}{z^2+2z+5} dz$$
, where c is the circle $|z+(1+i)| = 2$. 7M

b) Evaluate
$$\int_{c} \frac{f'(z)}{f(z)} dz$$
 where $f(z) = \frac{(z^{2}+1)^{2}}{(z^{2}+2z+2)^{3}}$, $c: |z| = 4$
UNIT-V

- 9. a) Show that the straight lines parallel to the co-ordinate axes in the z-plane maps onto parabolas in the w-plane under the transformation $w = z^2$. Indicate the region with sketches. 7M
 - b) Find the bilinear transformation which maps z = 1, i, -1 into $w = 0, 1, \infty$ Also find the fixed points of the transformation. 7M

OR

- 10. a) Show that the transformation $w = \frac{i(1-z)}{(1+z)}$ maps the circle |z| = 1 into the real axis of the w-plane and the interior of the circle |z| < 1 into the upper half of the w-plane. 7M
 - b) Find the bilinear transformation which maps the points z = -1, *i*, 1 into w = 1, *i*, -1. Also find its invariant points. 7M

b) Show that when two 2-port networks N1 and N2 are connected in parallel the equivalent Y-parameters of the combined network is the sum of Y-parameters 7M of each individual 2-port network.

 a) In the given network ,switch k is closed at t=0 with zero current in inductor .Find the values of I, di/dt and d²i/dt² at t-0+ if R=10 , L= 1 H and V=100V

b) **Develop** expression for current in series RLC circuit with DC excitation. 7M

4. a) **Determine** i(t) for t>0 in the circuit shown below

7M

7M

b) The switch in the circuit has been closed for a long time when the switch is opened at t=0 a) i_{L} (t) for t>0 b) **Determine** i_{L} (10 m sec) c) t_{1} if i_{L} (t_{1}) =0.5 i_{L} (0) 7M

		Code: 5G2	46
		UNIT–III	
5.	a)	Relate the characteristics of pass band and stop band filters, explain them.	7M
	b)	Discuss about constant k low pass and high pass filters.	7M
		OR	
6.	a)	Design constant k high pass filter with characteristic impedance of 600 ohms and to pass frequency above 20kHz.	7M
	b)	Design T- type attenuator to provide attenuation of 25 dB. Take characteristic impedance of 100 ohms.	7M
		UNIT–IV	
7.	a)	Explain various methods of speed control of dc shunt motor.	7M
	b)	Explain and draw characteristics of dc generator and dc motor.	7M
		OR	
8.	a)	Discuss torque equation of dc motor	7M
	b)	Explain about three point starter.	7M
		UNIT–V	
9.	a)	Explain how the efficiency of a transformer may be estimated from open circuit	
		and short circuit tests.	7M
	b)	Justify the statement " single phase motor is not self starting"	7M
		OR	
10.	a)	Explain the operation of capacitor start and capacitor run motor	7M
	b)	Discuss stepper motor and its characteristics.	7M

Hε	all Ticket Number :								_
Co	de: 5G344							R-1	5
	ll B.Tec	ch. II Semes		-			-	2017	
	(Field The	-						
٢	۱ Max. Marks: 70	Electronics			Junon	LIIGIII	senngj	Time: 3	3 Hours
	Answer all five u	nits by choosi	ing one	questior	from e	each u	nit (5 x 1	4 = 70 Ma	rks)
			Γ	UNIT-I					
a)	Prove that diverge	nce of a curl c	of a vecto			Stoke'	s theore	m	
b)	State Ampere's cire	cuit law. A hol	low con	ducting c	ylinder	has in	ner radiu	is' a' and o	uter radius
	'b' and carries curre	ent I along the	positive	Z direct	ion. Fin	d H ev	erywhere	Э.	
			_	OR					
a)	Define electric field	l intensity inter	rms of po	pint charg	ge and	describ	e its sali	ient feature	S.
L)	Two paint shares	0 5 00 -		10 - 0				0)	
b)	Two point charges respectively. Deter						•		(3, 1, 0) m
				UNIT-I					
a)	Derive an expressio	on for the capa	citance o			capacit	or having	g two dielec	tric media.
b)	The capacitance of	•		•	-	•			
,	separated by a diel					•		•	•
	Find (i) Electric flux Electric flux density.	•	radient i	n κv/m	(III) T	ne rela	ive perm	nittivity of m	aterials (iv
				OR					
a)	Derive an express	ion for the car	pacitance		wire tra	nsmiss	on line.		
b)	Drive an expression							c field	
,				UNIT-I		,			
a)	Derive the express	ions for magn	etic flux			soleno	d of the	coil.	
b)	Define magnetic v	ector potentia	al. Deriv	e expres	ssions	for pot	ential fu	nctions of	sinusoida
	oscillating functions	S.							
				OR					
a)	Derive the express	ion for torque	develop	ed in a re	ectangu	lar clo	sed circu	it carrying	current I ir
L)	an uniform field.			- f O ²	l	:			
b)	An iron ring with a with 250 turns wir								
	Calculate the flux e			01 0.0/1		Janve	permea		<i>y</i> 13 1000
			-	UNIT-I	V				
a)	State and derive co	omplex pointin	g theore	m.					
b)	Assume that E and		•	•			•		
	with a perfect die transmitted E and I				the ma	agnitude	es of in	cident, refl	ected and
		i waves at the	e interiat	,e. OR					
a)	Derive the express	ion for the atte	nuation		t nhase	o const	ant and i	ntrinsic imr	hedance
α)	for a uniform plane				, priast	5 00130			
b)	Derive the one dimer	nsional general	wave eq	uation and	d find th	e solutio	on for way	ve equation.	
			[UNIT-\	/				
a)	Explain the effect of	of inductance l	oading i	n telepho	ne cab	les in d	etail.		
b)	A 75 ohm transm		0						
	Determine its input	•				•		frequency	half of the
	original operating fi	requency, the	n what w	ouia be i OR	its effec		t∠in !		
a)	Derive the Zin equation	ons for Quarter	wave line		wave li	ne. Mer	ition their	applications	3.
b)	Derive the circle ec							11	
		1		• ***					

C -	-1 -	R-15	
Co	ae	II B.Tech. II Semester Regular Examinations May 2017	
		Pulse and Digital Circuits	
		(Electronics and Communication Engineering)	
Μ		. Marks: 70 Time: 3 Hours	
	A	nswer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
1. a	a)	Explain the response of high pass RC circuit with the help of waveforms.	
		i) Pulse input ii) Ramp input	7
k	c)	Explain how an RC high pass circuit acts as a differentiator	7
		OR	
2. a	a)	Analyze the low pass RC circuit for the following inputs, with the help of wave forms	
		i) Square input ii) Step input	7
k	c)	Explain how an RC low pass circuit acts as an integrator	-
		UNIT–II	
3. a	,	With the help of neat circuit explain the working of negative clamping circuit. What is	_
		the effect of Rs & R _f is clamping circuit output.	-
t)	The input voltage of the two level clipper is varying linearly from 0 to 100 V. Draw the output waveform and transfer characteristics.	
		R_1	
		$\uparrow 100K \qquad \qquad P_{-} \uparrow^{+}$	
		$\nabla D_2 = \nabla^2 D_2$	
		$1 \qquad 1 \qquad 1 \qquad 1 \qquad 5 \qquad 0 \qquad 0$	
		↓ 70V T T ↓ -	-
		OR	
4. a	a)	Write a short note on how transistor acts as a switch.	-
k	c)	Explain the need for clamping circuits	-
		UNIT–III	
5.		Find Lower and Upper Threshold voltage for Schmitt trigger circuits with following	
		data. Assume transistors with hfe=30, V _{CC} =12V, R _{C1} =4K, R _{C2} =1K, R1=2K, Rs=1K, R ₂ =6K, R ₂ =2K	14
		R ₂ =6K, Re=3K. OR	14
5.		What is a Monostable Multivibrator. Explain with the help of neat circuit diagram, the	
		principle of operation of mono stable multivibrator and derive an expression for pulse	
		width. Draw the waveforms at collector and bases of both transistors.	14
		UNIT–IV	
7. 8	a)	Explain the basic principles of miller and Bootstrap time base generator.	-
k	c)	Write the general features of a time base signal.	-
	-)	OR Discuss shout the simula summer simult	-
	a)	Discuss about the simple current sweep circuit.	-
t)	Explain about the linearly correction through adjusting of driving waveform.	-
) -	-)	UNIT-V	-
	a)	What is sampling Gate? And explain the basic operating principle of gates?	-
Ľ	c)	Explain the operation of unidirectional diode gate OR	
). a	a)	What are the different logic systems? Explain them?	-
	,	Prove that NAND and NOR gates are universal gates.	-
ŀ	c)	רוטיק נוומנ ואקוזע מווע וזערג עמנקז מוק ערוועקוזמי עמנקז.	

Hall Ticket Number :	
----------------------	--

Code: 5G341

Max. Marks: 70

II B.Tech. II Semester Regular Examinations May 2017

Random Variables and Random Processes

(Electronics and Communication Engineering)

Time: 3 Hours

R-15

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

- 1. a) Define probability and state the three axioms of probability
 - b) Define random variable and explain the conditions for a function to be a random variable
 - c) In a lot of 100 chips (semiconductor) 20 are defective .Two chips are selected at random without replacement , from the lot
 - i. What is the probability that the first one selected is defective.
 - ii. What is the probability that the second one selected is defective. Given that the first one selected is defective.
 - iii. What is the probability that both are defective?

OR

- 2. a) Define probability density function and state its properties
 - b) In a communication system three symbols 0, 1, 2, are transmitted. The events are Ai and Bj, where i= 1,2,3 and j= 1,2,3 to represent symbols after and before the channel respectively. The channel transition probabilities are all equal at p(Ai/Bj)=0.1, for i j and p(Ai/Bj)=0.8 for i=j =1,2,3, while symbol transmission probabilities are p(B1)=0.5, p(B2)=0.3 p(B3)=0.2
 - i. compute the received symbol probabilities P(A1),P(A2),P(A3).
 - ii. compute the error probabilities .

UNIT–II

3. a) Define expectation of a random variable& obtain the variance of a uniformly distributed random variable whose probability density function is given by

$$f_{x,x}(x) = \frac{1}{b-a} a < x < b$$

b) A military installation has six similar radars placed in operation. the radars probability of failing to operate before 500 hours of "on " time have accumulated is 0.06.what are the probabilities that before 500 hours have elapsed (i) all will operate (ii) all will fail (iii) only one will fail .

OR

- 4. a) Show that the mean and variance of a poisson distributed random variable are equal.
 - b) The notation μ_n denotes the n^{th} central moment then prove that $\mu_0{=}1~\mu_1{=}0~\mu_2{=}variance.$

UNIT–III

- 5. a) Define the joint density function of c and prove its properties.
 - b) The joint density function of two random variables X&Y , $f_{x,y}(x,y) = a(2x+y^2)$,0<x<2, 2<y<4. find (i) the value of 'a' (iii) P{x<1,y>3}

OR

- 6. a) Show that for two random variables X&Y , to be statistically independent $f_{x,y}(x,y)=, f_{x,x}(x) f_y(y)$
 - b) The joint density function of two random variables X&Y , $f_{x,y}(x,y) = 0.25(e^{-|x|-|y|})$
 - <x< -. <y<
 - i. Are the random variables X and Y statistically independent.
 - ii. Find the probability of the event $p{X \le 1, Y \le 0}$.

UNIT–IV

- 7. a) Define a Random process, what are the conditions for a random process to be wide sense stationary.
 - b) An ergodic random process X(t) has an autocorrelation function

$$R_{XX}$$
.^(s)= 18+ $\frac{2}{6+s2}$ (1+4cos(12s)

- i. Find mean of X(t)
- ii. Average power in X(t)
- iii. Is x(t) consisting of any periodic components.

OR

- 8. a) If X(t) is a wide sense stationary random process with autocorrelation function R_{xx} (t,t+s),state any four properties of autocorrelation and prove them.
 - b) Show that the random process X(t)=Acos (Wt+) is wide sense stationary if it is assumed that A andW are constants and is a uniformly distributed random variable on the interval (0,2)

UNIT–V

- 9. a) Define power spectral density of a random process X(t) and state its properties with necessary proof.
 - b) Which ε_{1} imc_{yr}ig the follov ving are valid power spectral density functions $\frac{\cos 8w}{-2+w4} = \frac{w^2}{e^{-(w-1)^2}} = \frac{w^2}{w6+3w^2+3}$

OR

- 10. a) Show that the autocorrelation function and power spectral density are a fourier transform pair.
 - b) The autocorrelation function of a wide sense stationary random process is R_{xx} .^(s)=ke^{-|s|k}

obtain its power spectral density.
