Code: 5G343

II B.Tech. II Semester Regular \& Supplementary Examinations May 2018

 Analog Communication

 Analog Communication}
(Electronics and Communication Engineering)
Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Describe $A M$ wave by considering single modulating signal. Draw its time and frequency domain representation.
b) What is the effect of phase and frequency error in demodulation of SSB
wave using synchronous detector. Explain in detail.

OR
2. a) Explain the generation of DSBSC wave using balanced modulator 6M
b) Derive the canonical expression for Vestigial Side Band (VSB) wave. How it 8M is used in TV broadcast?

UNIT-II

3. a) What is a PLL? Assuming the linear model, explain with expressions, how
PLL can be used as FM detector.
b) Explain the working of a balanced frequency discriminator with the help of
circuit diagram.

OR
4. a) Explain in detail about NBFM and WBFM. Derive the expression for bandwidth of wideband FM.

9M
b) A single tone FM signal is given by
$V(t)=10 \sin \left(16 \pi \times 10^{6} t\right)+20 \sin \left(2 \pi \times 10^{3} t\right)$ volts. Determine the modulation index, modulating frequency, frequency deviation, carrier frequency and the power of the FM signal.
UNIT-III
5. a) Discuss the noise performance of AM system using envelop detection? 8M
b) What is FM threshold effect? How to achieve threshold reduction in FM system? 6M

OR
6. a) What is the need of pre-emphasis and de-emphasis in FM transmission?
Sketch their frequency response. How are these of avail in FM systems?
b) Define Figure of Merit (FoM). Derive the expression for FoM of SSB-SC system.

UNIT-IV

7. a) Draw the block diagram of a super heterodyne receiver and explain its
operation? What are the advantages of this receiver?
b) What are image frequency and its rejection? In a broadcast super heterodyne receiver having no RF amplifier, the loaded Q of the antenna coupling circuit is 100 . If the IF frequency is 455 kHz , determine the image frequency and its rejection ratio for tuning at (a) 1.1 kHz \& (b) 25 kHz .

OR

8. a) What is simple Automatic Gain Control (AGC)? What are its functions? What is delayed AGC and what are its merits compared to simple AGC?
b) Discuss the considerations in the choice of IF and the design of IF stage. 6M

UNIT-V

9. a) Explain the concept of TDM and FDM clearly. 10M
b) Compare TDM and FDM. 4M
10. a) Compare PAM, PWM and PPM. 4M
b) Explain how PPM and PWM signals are generated from PAM signals. Also, explain how they are detected.

|| B.Tech. || Semester Regular \& Supplementary Examinations May 2018 Complex Variables \& Special Functions

(Common to EEE and ECE)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Evaluate $\int_{0}^{-1}\left(\log \frac{1}{y}\right)^{n-1} d y,(n>0)$.

 7M

2. a) Show that the function ow that $o=(n$ not analytic at the origin even though CR equations are satisfied thereof.
b) Find the analytic function whose real part is $\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$ 7M

OR

 7M
b) Using ${ }^{\text {te } J_{0}}{ }^{\text {Cauchy's }}$ integral formula, evaluat
circle $\left.\right|^{z 1}=3$

7. a) Find the residues of $\underset{f(z)=-\frac{(z-1)^{4}(z-1)(z-3)}{z^{3}} \frac{\text { UNIT-IV }}{\text { UNIT }}}{\text { expa }}$ it poles 7M
b) By integrating around a unit circle, Evaluate \int_{0} OR
8. a) State and prove Argument principle.
b) Determine the poles of the function e.
9. a) Find the bilinear transformation which maps the points \qquad onto 7M
b) Discuss the transformation $f(z)=z_{2}$.
and $y=$ constant into two families of confocal central conics.

b) Find the bilinear transformation which maps the points $=-\downarrow, \ldots$ onto $_{w} \|_{1,-_{\ldots, 1}} 7 \mathrm{M}$

Code: 5G246

R-15

II B.Tech. II Semester Regular \& Supplementary Examinations May 2018
Electrical Technology
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define and obtain transmission parameters by taking any one example?
b) The Z-parameters of a two-port network are $Z_{11}=10 \quad, Z_{22}=20 \quad, Z_{12}=Z_{21}=5$. Find the $A B C D$ parameters.

OR

2. a) What is the use of h-parameters? Derive equations to determine these parameters. State the condition for symmetry and Reciprocity in a two port network in terms of "h" parameters.
b) Obtain " Z " parameters in terms of " Y " parameters for a two port network.

UNIT-II

3. a) What are the different types of transients?
b) A 20 ohm resistor, a 0.01 h inductor and a $100 \mu \mathrm{~F}$ capacitor are connected in series. A d.c. voltage of 100 V is suddenly applied to the circuit. Obtain the equation showing how the current through the circuit is varies with time. Find the maximum current and the time at which it occurs?

OR

4. a) Explain in detail about the transients in R-C series circuit with DC Excitation?
b) A circuit of resistance 10 ohms and the inductance of 0.1 H in series has a direct voltage of 200 V suddenly applied to it. Find the voltage drop across inductance at the instant of switching on and at 0.01 second?

UNIT-III

5. a) Define filter and write short notes on low-pass filter?
b) A filter is required to pass all frequencies above 25 kHz and to have a nominal impedance of 600 . Design (i) a high-pass T section filter and (ii) a high-pass π - section filter to meet these requirements?

OR

6. a) What is attenuator? Design a T-section symmetrical attenuator to provide a voltage attenuation of 15 dB and having a characteristic impedance of 500
b) Derive the design equations for Lattice type attenuator? 8 M

UNIT-IV

7. a) Derive the EMF Equation of a DC Generator? 4 M
b) Explain how the speed of a DC shunt motor is controlled through flux and armature control method?

OR

8. a) Write the applications of different types of DC motors? 4 M
b) Draw and explain magnetization and load characteristics of DC shunt generator? 10M

UNIT-V

9. a) Explain OC and SC tests of a 1-phase transformer with a neat circuit diagram? 10M
b) A $11000 / 400 \mathrm{~V}$ distribution transformer takes a no load primary current of 1 A at a power factor
of 0.24 lagging. Find: (i) Core loss current. (ii) Magnetizing current. (iii) Iron loss. 4 M

OR

10. a) Explain the construction of hybrid stepper motor with diagram? 10 M
b) Write the advantages of capacitor start and run single phase induction

Hall Ticket Number :									

Code: 5G344
II B.Tech. II Semester Regular \& Supplementary Examinations May 2018

Field Theory and Transmission Lines

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

$* * * * * * * * *$

UNIT-I

1. a) State and Explain Coulomb's law using vector form of coulomb's force expression.
b) Let $J=400 \sin \theta /\left(r^{2}+4\right) \mathbf{a}_{\mathrm{r}} \mathrm{A} / \mathrm{m}^{2}$. Find the total current flowing through that portion of the spherical surface $r=0.8$ bounded by $0.1 \pi<\theta<0.3 \pi, 0<\varphi<2 \pi$ 7M
OR
2. a) State and prove Gauss law for arbitrary shaped closed body.7M
b) A potential field is given as $V=100 e^{-5 x} \sin 3 y \cos 4 z$ Volts. Let the point $P(0.1, \mathrm{pi} / 12$, pi/24) be located at a conductor free space boundary. At point P, find i) \mathbf{E} ii) \mathbf{D} iii) ρ_{s} 7M
UNIT-II
3. a) A conductor is called as "Equipotential Body". State yes or no. and Justify the statement with the necessary mathematical equations.
b) If $J=\left(1 / r^{3}\right) .\left(2 \cos \theta a_{r}+\sin \theta \mathbf{a}_{\varphi}\right) A / m^{2}$, calculate the current passing through a
i) Spherical shell of radius of 10 cm
ii) Hemispherical shell of radius of 20 cm
OR
4. a) A circular disc of 10 cm is charged uniformly with a total charge of 10 Coulombs. Find Electric field intensity at a point 20 cm away from the disc along the axis.
b) Distinguish between the conduction and convection currents. Calculate the relaxation time
for Brass material, having conductivity of $1.1 \times 10^{7} \mathrm{mho} / \mathrm{m}$ at 10 MHz . 7 M
UNIT-III
5. a) What will be the nature of force between the two current elements if the currents are in the same \& opposite directions, explain with necessary derivations

$$
\begin{aligned}
& \text { b) Establish the fields in the different regions of coaxial carrying a current I, and sketch their } \\
& \text { variation with radial distance. }
\end{aligned}
$$

OR

6. a) What is the force experienced by a charge in a magnetic field? Obtain Lorents force equation.
b) Write a short note on Inductances
7M

UNIT-IV

7. a) Derive the relations between $\mathrm{E} \& \mathrm{H}$ in a uniform plane wave. Find the value of intrinsic impedance of free space.

b) Derive the expression for attenuation and phase constants of uniform plane wave in a good
dielectric
OR
8. a) Derive the expressions for reflection and transmission coefficients, when a uniform plane wave incidents normally on surface of a perfect dielectric
b) A uniform plane wave is incident normally on a infinitely thick slab of material with $25 \mathrm{~V} / \mathrm{m}$ electric field. The material has a dielectric constant 4. How much power penetrates the material slab?

UNIT-V

9. a) Derive the expression for the transmission line equation
b) A lossless transmission line having $\mathrm{ZO}=120 \pi$ is operating at $\omega=5 \times 108 \mathrm{rad} / \mathrm{s}$. If the velocity on the line is $2.4 \times 108 \mathrm{~m} / \mathrm{s}$ find $L \& C$. Let $Z \mathrm{~L}$ be represented by an inductance of 0.6 H in series with a 100 resistance. Find reflection coefficient and VSWR.
10. a) Derive the characteristic impedance of the transmission line in terms of its line constants 7M
b) Explain how to find the length and the distance of double stub in transmission line matching

|| B.Tech. II Semester Regular \& Supplementary Examinations May 2018
 Pulse and Digital Circuits

(Electronics \& Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) ******

UNIT-I

1. a) Derive the expression for the output of a high-pass circuit excited by exponential input and ramp for different time constants.
b) A 20 Hz symmetrical square wave whose peak to peak amplitude is 1 V is impressed upon a high -pass RC circuit whose lower $3-\mathrm{dB}$ frequency is 10 Hz . Calculate and sketch the output waveform for the first two cycles. What is the peak-to-peak output amplitude under steady-state conditions?

OR

2. a) Define following
i. Transmission Error
ii. Percentage tilt
iii. Attenuator.
iv. Over compensation
v. Linear wave shaping
vi. integrator
b) A square wave whose peak-to-peak value is 1 V extends $\pm 0.5 \mathrm{~V}$ with respect to ground. The duration of the positive section is 0.1 sec and of the negative section is 0.2 sec. if this wave form impressed upon an RC differentiating circuit whose time constant is 0.2 s , what are the steady-state maximum and minimum values of the output waveform? Prove that the area under the positive section equals that under negative section of the output waveform. What is the physical significance of the result?

UNIT-II

3. a) Give the circuits of different types of shunt clippers and explain their operation with the help of their transfer characteristics.
b) State and prove clamping circuit theorem. Sketch the output waveform that you would expect from the circuit shown in figure.

OR
4. a) Explain transfer characteristics of emitter coupled clipper and derive necessary equations.
b) Draw the transfer characteristics for the clipper circuit shown. Assume ideal Diodes.

UNIT-III

5. a) Explain and Derive the expression for frequency of oscillation of an Astable multi vibrator.
b) Design a collector coupled Astable multivibrator using NPN silicon transistors with $\mathrm{h}_{\mathrm{f}}=40, \mathrm{r}_{\mathrm{bb}}=200$ supplied with $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ and circuit component values are $\mathrm{R}_{\mathrm{c}}=1.2 \mathrm{~K}$ and $\mathrm{C}=270 \mathrm{pF}$.

OR

6. a) Explain the operation of a Monostable multivibrator and derive for the pulse width with necessary waveforms \& circuits.
b) Design a symmetric collector-coupled astable multivibrator to generate a square wave of 10 kHz having peak-to-peak amplitude of 10 V where, $\mathrm{h}_{\text {FE }} \min =30, \mathrm{~V}_{\mathrm{CE}}(\mathrm{sat})=0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}(\mathrm{sat})=2 \mathrm{~mA}$

UNIT-IV

7. a) Define and derive the terms slope error, displacement error and transmission error.
b) In the transistor bootstrap circuit, $\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=-15 \mathrm{~V}$, $\mathrm{R}=10 \mathrm{k}, \mathrm{R}_{\mathrm{E}}=15 \mathrm{~K}$, $\mathrm{R}_{\mathrm{B}}=150 \mathrm{~K}, \mathrm{C}=0.05 \mu \mathrm{~F}$, and $\mathrm{C}_{1}=100 \mu \mathrm{~F}$. the gating waveform has a duration $\mathrm{Tg}=300 \mu \mathrm{~S}$. The transistor parameters are $\mathrm{h}_{\mathrm{fe}}=1.1 \mathrm{~K}, \mathrm{~h}_{\mathrm{re}}=2.5 \times 10^{-4} \mathrm{k} \quad \mathrm{h}_{\mathrm{fe}}=$ $50, h_{\text {oe }}=1 / 40 k$
a) Draw the waveforms of $I_{C 1}$ and V_{O}
b) What is the slope error of the sweep
c) What is the retrace time for C discharge completely.

OR

8. a) How is deviation of linearity expressed? What do you mean by sweep time and restoration time?
b) How a compensation circuit improves the linearity of a Bootstrap voltage time base generator? Discuss.

UNIT-V

9. a) Draw and explain with relevant waveforms the process of frequency division by an Astable multivibrator.
b) Explain about phase delay and phase jitters. 6M

OR

10. a) Explain the synchronization of a sweep circuit with symmetrical signals.
b) Explain about unidirectional diode sampling gate. Write its advantages and disadvantages.
