\square
Code: 7G641
R-17

|| B.Tech. II Semester Regular \& Supplementary Examinations November 2020 Advanced Strength of Materials

> (Civil Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

1. a) State the assumptions made in the theory of thin cylinders.
b) A cylindrical shell, 0.8 m in diameter and 3 m long is having 10 mm wall thickness. If the shell is subjected to an internal pressure of $2.5 \mathrm{~N} / \mathrm{mm}^{2}$, determine (i) change in diameter (ii) change in length and (iii) change in volume. Take $\mathrm{E}=200 \mathrm{GPa}$ and Poisson's ratio $=0.25$.
2. a) A thick cylinder of 0.5 m external diameter and 0.4 m internal diameter is subjected simultaneously to internal and external pressures. If the internal pressure is $25 \mathrm{KN} / \mathrm{m}^{2}$ and the hoop stress at the inside of the cylinder is $45 \mathrm{MN} / \mathrm{m}^{2}$ (tensile), determine the intensity of the external pressure.
b) The cylinder of a hydraulic press has an internal diameter of 0.3 m and is to be designed to withstand a pressure of $10 \mathrm{KN} / \mathrm{m}^{2}$ without the material being stressed over $20 \mathrm{KN} / \mathrm{m}^{2}$. Determine the thickness of the metal and the hoop stress on the outer side of the cylinder.
3. a) List out the assumptions made in the torsion theory.
b) Derive the torsion equation, $\frac{T}{J}=\frac{c \theta}{L}=\frac{\tau}{r}$ for a circular shaft.
4. A shaft has to transmit a torque of 30 kNm . The maximum shear stress is not to exceed 100 MPa and the angle of twist is not to exceed 1% metre length. Take $\mathrm{C}=80 \mathrm{GPa}$. Design the shaft according to the given specifications if it is a (i) Solid circular shaft and (ii) Hollow circular shaft of internal diameter 90% of the external diameter.
5. a) List out the assumptions made by Euler's theory?
b) Compare the ratio of the strength of solid steel column to that of the hollow steel column of the same cross-sectional area. The internal diameter of the hollow column is $3 / 4$ th of the external diameter. The columns have the same length and are pinned at both ends. Use Euler's theory.
6. a) Define the core or kernel of the section. Find the core of rectangular section.
b) A short hollow cylindrical column carries a compressive farce of 400 kN . The external diameter of the column is 200 mm and the internal diameter is 120 mm . Find the maximum permissible eccentricity of the load, if the allowable stresses are $60 \mathrm{~N} / \mathrm{mm}^{2}$ in compression and $25 \mathrm{~N} / \mathrm{mm}^{2}$ in tension.

Marks	co	$\underset{\substack{\text { Blooms } \\ \text { Level }}}{ }$
4M	1	L1
10M	1	L3
7M	1	L3
7M	1	L3
4M	2	L1
10M	2	L2
14M	2	L3
4M	3	L1
10M	3	L3
4M	4	L1
10M	4	L3

7. The figure shows an unequal angle of dimensions $80 \mathrm{~mm} \times 60 \mathrm{~mm}$ and 12 mm thick. Determine: (i) Position of Principal axes and (ii) Magnitude of the Principal moments of inertia for the given angle.

8. Calculate the stresses at the corners of the rectangular section of a simply supported beam of span 4 m which carries a load of 4 kN at the mid-span. The load line is inclined at an angle of 20° to the vertical longitudinal plane as shown in the figure and passes through the centroid of the section. The dimensions of the section are shown in the figure.

14 M 5 L 3

Code: 7G642
II B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Building Planning \& Drawing

(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
PART-A
Answer any Three questions from the following ($3 \times 14=42$ Marks)

1. a) What are the building bye laws? Explain them briefly

Marks	CO	Blooms Level
7 M	CO 1	LL

b) Write short notes on Floor Area Ratio (FAR), how it is related to height of the building. Explain.
7M CO1 L1,L4
2. Explain different factors that affect the site selection for a residential building.
14M CO1 L2,L4
3. a) What are the factors to be considered by planner prior to planning of a residential building? Explain one of them in detail.

7M CO2 L1,L2
b) Explain the standard requirements of the following in a residential building.
i) Bed Room ii) Drawing cum Dining Room 7M co2
4. Explain CPM and PERT network plan? 14M co3
5. From the utility data for a network are given below. Determine the total, free, independent and interfering floats and identify the critical path.

Activity	$0-1$	$1-2$	$1-3$	$2-4$	$2-5$	$3-4$	$3-6$	$4-7$	$5-7$	$6-7$
Duration(in days)	2	8	10	6	3	3	7	5	2	8

PART-B
Answer any one question from the following units ($1 \times 28=\mathbf{2 8}$ Marks)
6. Draw the King Post Truss of 6.00 m clear span with all required elements like Purlins, rafters and battens. The cross sectional details are as follows.
King post: $10 \mathrm{~cm} \times 10 \mathrm{~cm}-1.8 \mathrm{~m}$ Height
Principal Rafter: $12 \mathrm{~cm} \times 10 \mathrm{~cm}-3.5 \mathrm{~m}$ long
Common Rafter: $10 \mathrm{~cm} \times 6 \mathrm{~cm}-80 \mathrm{~cm}$ spacing
Eave Board: $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ Cleats: $8 \mathrm{~cm} \times 8 \mathrm{~cm}-15 \mathrm{~cm}$ long
Purlins: $12 \mathrm{~cm} \times 8 \mathrm{~cm} \quad$ Battens: $4 \mathrm{~cm} \times 4 \mathrm{~cm}$
Assume cross section of any other connection elements if required. $\quad 28 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 3$
OR
7. The line diagram for a plan of a residential building is provided below:

Draw a neat diagram of the plan and section A-A of the same
Assume all data required as per the standard dimensions.

Hall Ticket Number :

Code: 7GC41

II B.Tech. II Semester Regular \& Supplementary Examinations November 2020 Environmental Science
(Common to CE \& ME)
Max. Marks: 70 Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)*********
Marks

1. a) Define environmental studies. Why it is called a multidisciplinary subject? 7M
b) Discuss the scope and importance of environmental studies. 7M
2. a) Discuss the impact on environment by the extraction of minerals. 7M
b) Briefly explain the role of individual on the conservation of natural resources. 7M
3. a) Explain the structure of an ecosystem. 7M
b) Discuss the food chains and the food webs. 7M
4. a) Explain the consumptive and productive value of biodiversity. 7M
b) Discuss the In -situ conservation of biodiversity. 7M
5. a) Explain the causes, ill effects and remedial measures of air pollution. 7M
b) Write notes on soil pollution. 7M
6. a) Define environmental pollution? Explain thermal pollution. 7M
b) Discuss the causes, ill effects and remedial measures of Nuclear hazards. 7M
7. a) Explain the conservation of water by rain water harvesting technique. 7M
b) Give the salient features of Air Act. 7M
8. a) Write notes on Acid rains. 7M
b) Explain the Family Welfare programme. 7M

II B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Hydraulics and Hydraulic Machinery

(Civil Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)
$* * * * * * * * *$

1. $\quad \mathrm{Fo}_{\mathrm{r}}$ the ${ }^{\prime \epsilon} \geqslant$ locit $^{\mathrm{y}}{ }_{\mathrm{prot}}^{i \mathrm{i}}$ le for laminar boundary layer flows given as $\frac{u}{v}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}:$ Find an expression for boundary layer thickness (δ), s. .hear stress (T_{0}) and coefficient of drag $\left(\mathrm{C}_{\mathrm{D}}\right)$ in terms of Reynolds number.
2. A man weighing 880 N descends to the ground from an aeroplane with the help of a parachute against the resistance of air. The velocity with which the parachute, which is hemispherical in shape, comes down is $20 \mathrm{~m} / \mathrm{s}$. Find the diameter of the parachute. Assume $C_{D}=0.50$ and specific weight of air is $12.26 \mathrm{~N} / \mathrm{m}^{3}$.
3. a) Explain about various water surface profiles occurring in different channels.
b) The depth of the flow of water at a certain section of a rectangular channel 3 m wide is 0.25 m . The discharge through the channel is 1.8 cumecs. Determine whether hydraulic jump will occur and if so find the height and loss of energy.
4. a) Prove that the force exerted by a jet of water on a fixed semicircular plate in the direction of the jet when the jet strikes at the center of the semicircular plate is two times the force exerted by the jet on an fixed vertical plate.
b) Water is following through a pipe at the end of which a nozzle is fitted. The diameter of the nozzle is 100 mm and the head of water at the center of the nozzle is 100 m . find the force exerted by the jet of water on a fixed vertical plate. The coefficient of velocity is given as 0.95 .
5. a) Show that the force exerted by tr) jet wat in in inclined fixed plate in the
 $v=$ velocity of the jet and $\theta=$ inclination of the plate with the jet.
b) A jet of diameter 50 mm strikes a fixed plate in such a way that the angle between the plate and jet is 30°. The force extracted in the direction of the jet is 141.5 N . determine the rate of flow of water.
6. a) Define the terms unit power, unit speed, and unit discharges with reference to a hydraulic turbine.

7M 4
L1
b) A Pelton wheel is working under a head of 500 m produce $13,000 \mathrm{kw}$ at 429 rpm . If the efficiency of the wheel is 85%, determine
(i) Discharge of the turbine
(ii) Diameter of the wheel
(iii) Diameter of nozzle
b) Show that capacity factor is equal to the product of the load factor and the utilization factor.
\square
Code: 7GC42
|| B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Probability and Statistics

(Common to Civil Engineering, ME \& CSE)
Max. Marks: 70
Answer any five questions from the following ($5 \times 14=70$ Marks)
$* * * * * * * * *$

Marks
b) The diameter of an electric cable say X is assumed to be a continuous random variable with Probability density function
$f(x)=6 x(1-x) ; 0 \leq x \leq 1$.

Find mean and variance.
2. a) State and prove Baye's theorem.
b) The cumulative distribution function of a continuous random variable

X is given by

$$
F(x)=\left\{\begin{array}{ll}
0, & x<0 \\
x^{2}, & 0 \leq x<1 / 2 \\
1-\frac{3}{25}(3-x)^{2}, & (1 / 2) \leq x<3 \\
1, & x \geq 3
\end{array}\right\}
$$

Find the pdf of x and evaluate $P((1 / 3) \leq X<4)$.
3. a) In a large consignment of electric bulbs 10\% are defective. A random sample of 20 is taken for inspection. Find the probability that
(i) All are good bulbs.
(ii) At most there are three defective bulbs.
(iii) Exactly there are three defective bulbs.
b) The weekly wages of 1000 workmen are normally distributed around a mean of Rs. 70 with a standard deviation of Rs.5. Estimate the number of workers whose weekly wages will be
(i) Between Rs. 69 and Rs. 72
(ii) Less than Rs. 69
(iii)More than Rs. 72.
4. a) Fit a Poisson distribution for the following data and calculate the expected frequencies

x	0	1	2	3	4	5
$f(x)$	142	156	69	27	5	1

b) Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3 boys? Assume equal probabilities for boys and girls.7M
5. a) A population consists of the four numbers $3,7,11,15$. Consider all possible samples of size 2 which can be drawn with replacement from this population. Find the population mean and standard deviation, and mean and standard deviation of the sampling distribution of means.7M
b) The standard deviation of the life-times of television tubes manufactured by a company is estimated as 100 hours. Find how large a sample must be taken in order to be 99% confident that the error in the estimated mean life-time will not exceed 20 hours
6. a) Random samples of 400 men and 600 women were asked whether they would like to have a flyover near their residence. 200 men and 325 women were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of the proposal are same at 5\%level.
b) Two random samples gave the following data

	size	mean	Variance
Sample I	8	9.6	1.2
Sample II	11	16.5	2.5

Is the difference between means significant?
7. The following data give the number of air-craft accidents that occurred during the various days of a week

Day	Mon	Tue	Wed	Thu	Fri	Sat
No. of accidents	15	29	13	12	16	15

Test whether the accidents are uniformly distributed over the week.
8. Two random samples drawn from two normal populations have the variable values as below:

Sample1	19	17	16	28	22	23	19	24	26			
Sample2	28	32	40	37	30	35	40	28	41	45	30	36

Obtain the estimate of the variance of the population and test whether the two populations have the same variance.

Code: 7G644

II B.Tech. Il Semester Regular \& Supplementary Examinations November 2020 Structural Analysis-I
(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

Marks	CO	Blooms Level
14M	CO1	L4 \&L6

2. a) Distinguish between indeterminate structures and determinate structures? With examples

4M CO1
b) What is the value of end moments of a fixed beam if the end settles by a fixed amount of (120/EI)?

10M CO1
3. Analyse and interpret the results of continuous beam subjected to loading as shown in figure? Also construct the BMD and SFD for the same

4. Using slope deflection method, analyse the continuous beam and draw the bending moment diagram. The support B sinks by 5 mm . $E=2(10)^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=400 \times 10^{6} \mathrm{~mm}^{4}$.

5. A continuous beam $A B C$ consists of two spans $A B$ and $B C$ of lengths $6 m$ and 4 m . The span $A B$ carries a UDL of $20 \mathrm{~K} / \mathrm{m}$, while the span $B C$ carries a point load of 80 kN at 3 meters from c . Draw the shear force diagram and bending moment diagram using moment distribution method.

6. A simply supported beam of 15 metre span is subjected to uniform live load of $100 \mathrm{kN} / \mathrm{m}$ (longer than the span) of span 20 m . Determine the maximum value of positive as well as negative shear force at left quarter span.
7. A single rolling load of 20 kN rolls over a simply supported girder of 20 metre span. Construct the diagrams for the maximum shear force and maximum bending moment in the girder.

8. Determine the forces in all the members of the redundant pin jointed frame shown in Fig. The area of the cross section of the diagonals is twice that the other members.

