Code: 7G345

R-17

|| B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Analog Electronics-II

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

1. a) Define an IC and give the classification of IC's in detail.
b) Discuss the AC characteristics of an Op Amp

Marks	CO	BL
$7 M$	1	1
$7 M$	1	2

2. a) Describe the internal block diagram of an Op-amp and explain each block in detail

7M 1	

b) Draw the ideal characteristics of an op-amp and draw its block diagram.

7M 1
3. a) In an inverting adder circuit, the input voltages are $0.3 \mathrm{~V}, 0.5 \mathrm{~V}, 0.1 \mathrm{~V}$ while $R_{1}=R_{2}=R_{3}=1 \mathrm{~K} \quad, R_{f}=10 \mathrm{~K}$. Calculate the output voltage.

7M 23
b) Evaluate and derive an expression for V_{0} of the practical differentiator circuit by using op amp.

7M $2 \quad 6$
4. a) Evaluate the time period of a free running astable multivibrator used as square wave generator using op-amp.

7M 26
b) Explain the working and operation of anti log amplifier using op-amp.
7M 22
5. a) Explain the working of a comparator using op amp. What are its limitations?
b) Discuss in detail about the operation of sawtooth wave generator using op-amp.
$7 \mathrm{M} \quad 2 \quad 2$
6. a) Realize a monostable multivibrator using 555 timer to obtain pulse of width of 0.1 msec . Draw the circuit diagram with its waveforms.
b) Realize the Schmitt trigger using a 555 timer IC.
7. a) Draw and explain the principle of operation of dual slope ADC.
b) A 12-bit D to A convertor has a full-scale range of 15 volts. Its maximum differential linearity error is $\pm 1 / 2$ LSB.
i) What is the percentage resolution
ii) What are the minimum and maximum possible values of the increment in its output voltage?

7M $\quad 5 \quad 3$
8. a) Explain the working of a successive approximation ADC with neat sketches.
$\begin{array}{lll}7 M & 5 & 1\end{array}$
b) Explain the operation of an R-2R ladder DAC and mention its applications. $\quad 7 \mathrm{M} \quad 5 \quad 3$

Code: 7GC43

II B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Complex Variables and Special Functions

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

b) Find the general and principal values of $\log (1+$ ass .
2.

b) If
3. a) If ${ }_{w=\log _{z, ~ f i r ~}^{-(y)}}^{\text {Tan }} \frac{d w}{d z}$ and Describe where ${ }_{w}^{1^{2}+}$ is non-analytic.

5. a) Show tr ${ }^{\text {rat }} \int_{c_{i}} e^{-2 z} d_{z \text { is indel }}^{\frac{1}{3 z+2}}$ as a Jendent of the path ${ }_{C^{\prime} \text { joinii }}^{0<1 z 1} \mathrm{~g}$ the points $1-$ πi and $3+3^{\pi i}$. Det ϵ rmine its value.
b) Find the Taylor's series expansion of $=a$ out $^{\text {nh }}=-3$.
6. Evaluate $\int_{0}^{\prime-\pi} \frac{d \theta}{17} \frac{d x}{17-8 \cos \theta}$ by antour integration applying the calculus of residues.
7. a) ShoN that the function $w_{y}=\frac{4}{z}$ tra nsforms the straight line ${ }_{x=c}$ in the z - blane into a circle in the w-blane.
b) Find the into a pirclefformation which maps the points ${ }^{\text {it }}{ }^{\operatorname{lin}}{ }_{1,}{ }^{x}=$ onto the points $w=i, 0,-i$.
8. a) Show that the relatio ${ }_{\mathrm{n}} w_{=} \frac{5-4 z}{4 z-2} \operatorname{tra}^{\text {asforms the circle }\left.\right|_{z 1}=1 \text { into a circle }}$ of radius unity in the w - plane.
b) Find the $k_{\text {Jilinear }}^{\text {unity in }}$ transformation which maps the points $(-1,0,1)$ into the points $(0, i, 3 i)$.
\square
Code: 7G244
II B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Electrical Circuits-II

(Electrical and Electronics Engineering)
Max. Marks: 70
Answer any five questions from the following ($5 \times 14=70$ Marks)

1. a) A single phase three wire system is fed by $V_{a n}=V_{n b}=100 \angle 0^{\circ} \mathrm{V}$ rms.

The two outside line currents are $I_{a A}=10+j 0$ and $I_{b B}=-9+j 1 \mathrm{Arms}$. If load $Z_{A N}=20+j 0$. Find $Z_{B N}$ and $Z_{A B}$. Assume zero line resistance
b) Explain the power measurement in a three phase circuit using two wattmeter method

7M 1
2. a) Find the inverse Laplace transform for the following function
(i) $\mathrm{s} /(\mathrm{s}+3)$
(ii) $\ln \left[\frac{s+1}{s+3}\right]$
b) Find the both sides of the final value theorem for each of the following functions
(i) $2 \mathrm{~s} /\left(\mathrm{s}^{2}+2 \mathrm{~s}+2\right)$
(ii) $1 /\left(s^{4}+4\right)$
3. a) Find the Laplace transform for the following functions

$$
\begin{equation*}
t e^{-2 t} u(t) \tag{i}
\end{equation*}
$$

(ii) $e^{-2 t} \sin 4 t u(t)$
b) Find $f_{1}(t) \times f_{2}(t)$
if $f_{1}(t)=t e^{-4 t} u(t)$ and $f_{2}(t)=5 \cos 3 t u(t)$
4. a) For the circuit of figure 3 , find the value at $t=0^{+}$of (i) $V_{1 \text { (ii) }} V_{2}$

Figure 3
b) Find $i_{1}(t), i_{2}(t)$ For the circuit of figure 4 ,

Figure 4
5. a) Find $v(t)$ and $i(t)$ if $v(0)=9 V$ for the dependent voltage source circuit in figure5.

Figure 5
b) Find the voltage across each of the three passive circuit elements in figure 6 at $t=0^{+}$if $v_{s=1}$ (i) 0 ; (ii) $12 v$

Figure 6

$7 M$	3	I
$7 M$	4	II
$7 M$	4	II
$7 M$	5	V

7. a) Explain the elementary the synthesis procedures?
b) Synthesize $Z(s)=\frac{(s+2)(s+4)}{(s+1)(s+5)}$ into the form shown in figure 7

Figure 7
8. a) Determine the following function is a positive real or not
$Z(s)=\frac{6 s^{3}+3 s^{2}+3 s+1}{6 s^{3}+3 s}$
b) Synthesize the L-C driving point impedance $Z(s)=\frac{6 s^{4}+42 s^{2}+4 \mathrm{a}}{s^{5}+18 s^{5}+48 s}$

In the form shown in figure 8, i.e., determine the element values of the network in henrys and farads

Figure 8

Code: 7G242

II B.Tech. II Semester Regular \& Supplementary Examinations November 2020 Electromagnetic Fields
(Electrical and Electronics Engineering)

Answer any five questions from the following ($5 \times 14=70$ Marks)
*********1. a) Find $\quad \ldots \quad$, point due to a line charge of density $\lambda \mathrm{C} / \mathrm{m}$ and length ' L ' m .
Marks
b) If na E at $x y^{2}(z+1) \mathrm{a}_{\mathrm{x}}+20 \mathrm{x}^{2} \mathrm{y}(\mathrm{z}+1) \mathrm{a}_{\mathrm{y}}+10 \mathrm{x}^{2} \mathrm{y}^{2} \mathrm{a}_{z} \mathrm{C} / \mathrm{m}^{3}$, calculate charge density at ${ }^{\circ}=(0.3,0.4,0.5)$. 7M
2. a) Derive 7M
b) On the line $x=4$ and $y=-4$, there is a uniform charge distribution with density $\rho_{\mathrm{L}}=25 \mathrm{nC} / \mathrm{m}$. Determine $\bar{\varepsilon}$ at $(-2,-1,4) \mathrm{m}$. 7M
3. a) Derive the expression for capacitance of co-axial cable. 7M
b) A line charge of $20 / 3 \mathrm{nC} / \mathrm{m}$ is uniformly distributed along a circular ring of radius $r=2 \mathrm{~m}$. Find the potential at a point on the axis of a ring 5 m from the plane of the ring. 7M
4. a) Using Biot-savart law, find n at me?
centre of a circular conductor. 7M
b) State and prove Maxwell's third equation. 7M
5. a) Using Ampere's circuital law, find anato infinitely long straight conductor. 7M
b) A wire is bent into a square coil. Each side of the coil has a length of 20 cm . The coil carries a current of 10 A . The medium is air. Find the vector magnetic potential at the centre of the coil. 7M
6. a) Derive an expression for the force between two current carrying conductors in the same direction 7M
b) Find self inductance of a solenoid having 500 turns, mean diameter equal to 10 cm and length equal to 5 cm . Assume medium to be air. 7M
7. a) Write down Maxwell's equations in their general integral form. 7M
b) Derive expression for displacement current 7M
8. a) State and explain the Faraday's law of electromagnetic induction 7M
b) Discuss about motional and transformer induced emf? 7M
\square
Code: 7G243
|| B.Tech. II Semester Regular \& Supplementary Examinations November 2020
Linear Control Systems
(Electrical and Electronics Engineering)
Max. Marks: 70
Answer any five questions from the following ($5 \times 14=70$ Marks)
$* * * * * * * * *$

1. a) Derive the transfer function relating input F and x_{1} for the system shown in figure below

b) Explain about open loop system and closed loop systems. 6M
2. Derive the expressions for rise time, peak time and maximum peak overshoot of a second order system.
3. a) Explain about different types of test signals.
b) A unity feedback system is characterized by the open loop transfer function $G(s)=\frac{k}{s(s+10)}$. Determine the gain K , so that the system has a damping ratio of 0.5 . For this value of K, determine peak time, settling time, peak overshoot.
4. The open loop transfer function of a control system is given by $G(s) H(s)=\frac{k}{s(s+6)\left(s^{2}+4 s+13\right)}$.

Sketch the root locus and determine
a. The break-away points,
b. The angle of departure
c. The stability condition
5. a) Define stability of a control system and explain about characteristic equation. 4M
b) The open loop transfer function of a unity feedback system is $G(s)=\frac{K}{(s+2)(s+4)\left(s^{2}+6 s+25\right)}$. By applying Routh Criterion, discuss the values of K which will cause sustained oscillations in the closed loop system and the corresponding frequencies
6. The open loop transfer function of a unity feedback system is given by $G(s)=\frac{K(s+20)}{(s+1)(s+2)(s+10)}$. Construct the bode plot for $\mathrm{K}=10$ and determine the phase margin, gain margin, phase crossover frequency and gain cross over frequency.
7. The open loop transfer function of a unity feedback system is $G(s)=\frac{1}{s(1+s)(1+2 s)}$ Sketch the polar plot and determine the gain margin and phase margin
8. a) Design the basic lead compensator using Bode plot 7M
b) Obtain the state space representation of the field controlled DC motor

Code: 7G241
|| B.Tech. II Semester Regular \& Supplementary Examinations November 2020
AC Machines-I
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

1. a) Explain the constructional details of Single phase transformers.

Marks	co	Blooms Level
$7 M$	1	L2
$7 M$	1	L2

2. a) Derive the e.m.f equation of Single phase Transformer.
7M 1 L2
b) Explain the effect of variations of frequency and supply voltage on core losses.
7M 1 L2
3. a) Explain the principle and operation of an Auto transformer in detail.
7M 2 L2
b) A single phase transformer working at unity power factor has an efficiency of 90 $\%$ at both half load and at the full load of 500 W . Determine the efficiency at 75% full load.

7M
L3
4. What is meant by 3 - phase transformer groups? What is the significance of these groups? What are the possible connections for a 3 - phase transformer bank? Explain.
5. a) Explain how will you pre determine the efficiency and regulation by conducting $O C \& S C$ tests on a single phase transformer with neat circuit diagrams.
b) A $50 \mathrm{kVA}, 2200 \mathrm{~V} / 1100 \mathrm{~V}$ single phase 50 Hz transformer has a full-load efficiency of 95% and iron loss of 500 W . The transformer is connected as an Auto-transformer to a 3300 V supply. When it delivers a load of 50 kW at unity power factor at 1100 V , Calculate the currents in the windings. Find also the increase in output as auto-transformer also calculate the copper losses as two winding transformer.
6. a) Explain the constructional details of $3-$ phase induction motors.
7M 4 L3
b) A 3 - phase, $50 \mathrm{~Hz}, 4$ - pole induction motor has a slip of 4%. Calculate:
(i) Speed of the motor (ii) Frequency of the rotor emf.
7M 1 L2
(i) Speed of the motor (ii) Frequency of the rotor emf.
7. a) What is circle diagram and what is its significance? How it can be drawn.
7M $\quad 4 \quad$ L4
b) Explain any one speed control method of 3 - phase induction motor.

$7 M$	1	L2

7M 3 L2
8. a) Explain any one starting method of 3 - phase induction motors.
7M $\quad 3 \quad$ L2
b) Explain the principle of operation of Induction generator.

