Н	all T	icket Number :															٦
Co	de: ′	7G345		J									_1		R-17		
II B	.Tec	ch. II Semester	Reg	-							min	atio	ns No	over	nber	2020)
			(Elo			-		ctro ronic			orin						
M	ax. I	Marks: 70 Answer an	-							-			'0 Mai		ie: 3 H	ours	
							*****	****							Marks	со	BL
1.	a)	Define an IC and	d give	e the	class	sificat	tion c	of IC's	s in d	etail.					7M	1	1
	b)	Discuss the AC	chara	acteri	stics	of ar	о Ор	Amp							7M	1	2
2.	a)	Describe the inte	rnal b	olock	diagr	am o	f an C	Op-an	np an	d exp	olain	each	block	in	714	4	0
	b)	detail Draw the ideal c	hara	otoric	tice	of an	00-2	mn a	nd dr	ow it	e hla	ck di	aram		7M 7M	1 1	2 1
	0)		nara	Clene	51103 (Jian	υρ-α	mp a			5 010		agram		7 101	I	I
3.	a)	In an inverting a					•	•).5V,	0.1V	while			
	L)	$R_1 = R_2 = R_3 = 1 K$						-		-					7M	2	3
	b)	Evaluate and de by using op amp		an ex	pres	sion 1	ior V) of tr	ie pra	actica	al diff	erent	lator c	circuit	7M	2	6
4	c)	Evolucia tha tin		oriod	of a	froe		nina	ootol	مام م		ibrot					
4.	a)	Evaluate the tin square wave get	-					ning	asta	ole n	nuitiv	ibrat	or use	a as	7M	2	6
	b)	Explain the work			-	-	-	i log a	ampli	fier u	ising	op-a	mp.		7M	2	2
5.	a)	Explain the work	king c	ofac	ompa	arato	r usin	ig op	amp	. Wh	at are	e its li	imitati	ons?	7M	2	2
	b)	Discuss in detail a	bout	the o	perati	on of	sawte	ooth v	vave	gener	ator u	using	op-am	p.	7M	2	2
6.	a)	Realize a mono	stable	e mu	ltivib	rator	using	g 555	i time	er to	obtai	n pul	se of	width			
		of 0.1msec. Drav	w the	circ	uit dia	agran	n with	n its v	vave	forms	6.				7M	4	4
	b)	Realize the Schr	mitt ti	rigge	r usir	ng a S	555 ti	mer l	C.						7M	4	4
7.	a)	Draw and explai	n the	prin	ciple	of op	erati	on of	dual	slop	e AD	C.			7M	5	2
	b)	A 12-bit D to A differential linear						ale ra	nge	of 15	5 volt	s. Its	s maxi	imum			
		i) What is the pe		•				nooci	blov	alua	s of +I	no in	oromo	nt in			
		ii) What are the r its output volta			anu f	παχιή		pussi	ne v	aiues			Jeille	11, 111	7M	5	3
8.	a)	Explain the work	kina c	ofas	ucce	ssive	appi	oxim	ation	ADC	C with	n nea	t sketo	ches.	7M	5	1
	b)	Explain the oper	•				•••								7M	5	3

	На	II Ticket Number :												1
	Cod	e: 7GC43	·						<u>. </u>			R-17		
II B.Tech. II Semester Regular & Supplementary Examinations November 2020														
			ariable Comm			-		Fun	ctic	ons				
	Ma	x. Marks: 70										ne: 3 Ho	ours	
Answer any five questions from the following (5 x 14 = 70 Marks)														
			215.0									Marks	со	Blooms Level
1.	a)	Show that $\beta(m,n) = \frac{\frac{1}{r}(n)}{r(n+n)}$	$\frac{n}{2}$, $m >$	0, ^{**} _n	> 0							7M	2	II
	b)	Find the general and princip	al value	es of	log (1+,	<u>√3)</u> .					7M	2	I
•	,	aperatund p incip	alvalue											
2.	a)	Show that $\beta (m, \frac{1}{2}) = 2_{2m-1}$	$^{L}B(m, n$	ı).								7M	2	II
	b)	frow that $\beta\left(m, \frac{1}{2}\right) = 2^{2m-1}$ Tan(x + iy) = A + iB then	W00	that	42 +	B2 +	200	ot 2:	• = 1	1.12		7M	2	II
3	2)	$\int_{w}^{Tan} \log_{z, \text{ fin}} d\frac{dw}{dz} \text{ and } \text{Des}$	₅ bow	horo	1² +	non	analı	rtic						
5.	a)	$w = \frac{\log_{z, \text{ fin}}}{dz}$ and Des	oribe w		w is	200-	anaiy	/110.				7M	1	I
	b)	Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \log f$	-'(z)I =	0 w	here	f(z)	an ar	n ana	alytic	func	tion.	7M	1	I
Δ	a)	Evaluate $\int_{C}^{\frac{g^{-}}{\chi^{2}} + \frac{g^{-}}{\partial y^{2}} \log 1} \int_{C}^{1}$	= 1C:	, 1 上 2	here	, na th			alytic	fL c	tion.		•	
ч.										= t ² , y	v = t	7M	2	V
	b)	Express $\int_{c}^{\int_{c} z dz} \frac{1}{z^{2}-3z+2}$ as c	a series	in th	ie re	gion	0 <	zI <	1.			7M	2	II
5	a)	Show that $\int_{c}^{\frac{1}{3z+2}} e^{-2z} d$	a Jendei	nt of	the r	hath [/]	0 < 1	zו רמ	the	noint	c 1 _			
•		Show that $\int_{c}^{c} e^{-2z} d$ πi and $\frac{3}{2} + \frac{3\pi i}{2}$. Determine it	s value				C' joi	ni		point	01	7M	2	Ш
	b)	Find the Taylor's series expansion			0	ut	<u>_</u> 3.					7M	2	I
6.		Evaluate $\int_{0}^{\pi} \frac{d\theta}{17-8\cos\theta} b^{y} d\theta$	₌ ,ontour	integ	gratio	on a	pplyir	ng th	ne c	alcul	us of			
		residues.										14M	3	V
7.	a)	Show that the function	$=\frac{4}{z}$ tra	sforr	ns tl	he st	raigh	t lin	e		the			
		z = blane into a circle in the							<i>x</i> :	= c	n	7M	2	II
	b)	Find the into a circleformat			aps tl	he po	oints [®]	t lin	l, ^{x :}	on	to the			
		points $w = i, 0, -i$.					2	z = 1	i, —	1		7M	2	I
8.	a)	Chow that the materia				4la -	امدا :		4 '	4	_!!			
0.	а)	Show that the relation $w =$		nsto	rms	ine c	Ircie	 =	1 IN	to a	circle		0	
	b)	of radius unity in the w – pla Find the tunity in transforma		ich m	nane	tha	nointe	s (_	10	1) int	o tho	7M	2	II
	U)	points $(0, i, 3i)$.			iaps	uie	points	s (-	1, U, .	.,		7M	2	I
				***	**									

Hall Tick	et Number :			_
Code: 70		R-17		
	. Il Semester Regular & Supplementary Examinations Nove Electrical Circuits-II	mber	2020)
Max. Ma	(Electrical and Electronics Engineering)	ne: 3 H	0. I I I	
Max. Ma	Answer any five questions from the following (5 x 14 = 70 Marks) ********	ю. 5 п	OUIS	
		Marks	со	Blooms Level
1. a)	A single phase three wire system is fed by $V_{an} = V_{nb} = 100 \angle 0^{\circ}$ V rms.			
	The two outside line currents are $I_{aA} = 10 + j0$ and $I_{bB} = -9 + j1$ A rms.			
	If load $Z_{AN} = 20 + j0$. Find Z_{BN} and Z_{AB} . Assume zero line resistance	7M	1	I
b)	Explain the power measurement in a three phase circuit using two wattmeter method	714	1	п
2. a)		7M	1	II
2. α)	(i) $s / (s+3)$			
	$\ln \left[\frac{s+1}{s+3} \right]$			
		7M	2	I
b)	Find the both sides of the final value theorem for each of the following functions			
	(i) $2s/(s^2+2s+2)$			
	(ii) $1/(s^4+4)$	7M	2	I
3. a)	Find the Laplace transform for the following functions			
	(i) $te^{-2t}u(t)$			
	(ii) $e^{-2t} \sin 4t u(t)$	7M	2	Ι
b)	Find $f_1(t) \times f_2(t)$			
	if $f_1(t) = te^{-4t}u(t)$ and $f_2(t) = 5 \cos 3t u(t)$	7M	2	I
4. a)	For the circuit of figure 3, find the value at $t = 0^+$ of (i) V_1 (ii) V_2			
	$s \Omega = 0$			
	$+ v_3 - 18 \Omega$			
	$18 \text{ V} \stackrel{+}{=} \qquad \qquad$			
	Figure 3	7M	3	I
b)	Find $i_1(t)$, $i_2(t)$ For the circuit of figure 4,		Ũ	•
,	$+ v_3 -$			
	$6 \Omega \gtrsim 25 \Omega$ \downarrow^{i_2}			
	15u(t) (+) 100 Ω ξ Ξ 20 mH			
			~	
	Figure 4	7M	3	I

7M

7M

3

I

5. a) Find v(t) and i(t) if v(0) = 9V for the dependent voltage source circuit in figure 5.

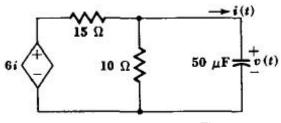
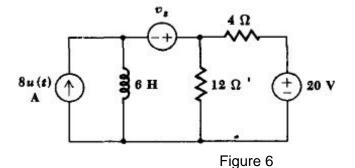
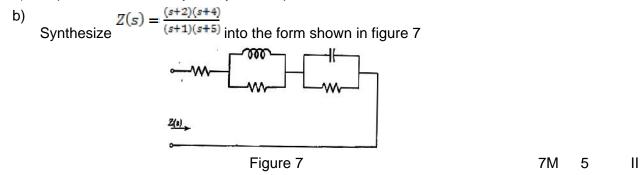



Figure 5

b) Find the voltage across each of the three passive circuit elements in figure 6 at $t = 0^+$ if $v_{s=1}$ (i)0; (ii) 12v

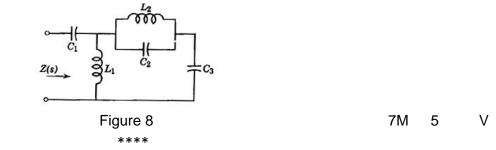

7M 3 I

5

П

V

- 6. a) Explain the evaluation of Fourier coefficients by symmetry consideration 7M 4 II
 - b) Show that if f(t) is odd, its fourier transform is odd and pure imaginary. 7M 4
- 7. a) Explain the elementary the synthesis procedures?



8. a) Determine the following function is a positive real or not

$$Z(s) = \frac{6s^3 + 3s^2 + 3s + 1}{6s^3 + 3s}$$
 7M 5 V

b) Synthesize the L-C driving point impedance $Z(s) = \frac{6s^4 + 42s^2 + 48}{s^5 + 18s^5 + 48s}$

In the form shown in figure 8, i.e., determine the element values of the network in henrys and farads

Hall	Ficke	et Number :									
Code:	7G2	42 R-17									
		II Semester Regular & Supplementary Examinations November 202	20								
		Electromagnetic Fields									
Max.	Mar	(Electrical and Electronics Engineering) ks: 70 Time: 3 Hou	rs								
		Answer any five questions from the following (5 x 14 = 70 Marks)									
			Marks 7M								
1. a) Find point due to a line charge of density C/m and length 'L' m. b) If $a^{2}/(z+1)a + 20x^{2}/(z+1)a + 10x^{2}x^{2} a - C/m^{3}$ calculate charge density											
	b) If $rate F at (y^2(z+1)a_x + 20x^2y(z+1)a_y + 10x^2y^2 a_z C/m^3)$, calculate charge density $at = (0.3, 0.4, 0.5)$.										
2.	a)	Derive $\frac{1}{2} = \frac{1}{2}$ from the fundamentals.	7M								
	b)	On the line $x = 4$ and $y = fundam$ is a uniform charge distribution with density	714								
		$_{L}$ = 25 nC/m. Determine \overline{e} at (-2,-1,4)m.	7M								
3.	a)	Derive the expression for capacitance of co-axial cable.	7M								
	b)	A line charge of 20/3 nC/m is uniformly distributed along a circular ring of radius $r = 2m$. Find the potential at a point on the axis of a ring 5m from the plane of									
		the ring.	7M								
4.	a) b)	Using Biot-savart law, find zet the centre of a circular conductor.	7M 7M								
	0)		7 101								
5.		Using Ampere's circuital law, find	7M								
	b)	A wire is bent into a square coil. Each side of the coil has a length of 20 cm. The coil carries a current of 10 A. The medium is air. Find the vector magnetic									
		potential at the centre of the coil.	7M								
6.	a)	Derive an expression for the force between two current carrying conductors in									
0.	a)	the same direction.	7M								
	b)	Find self inductance of a solenoid having 500 turns, mean diameter equal to 10									
		cm and length equal to 5 cm. Assume medium to be air.	7M								
7.	a)	Write down Maxwell's equations in their general integral form.	7M								
	b)	Derive expression for displacement current.	7M								
8.	a)	State and explain the Faraday's law of electromagnetic induction	7M								
	b)	Discuss about motional and transformer induced emf?	7M								

	на		D 17	
	Co	de: 7G243	R-17	
		.Tech. II Semester Regular & Supplementary Examinations Novem	nber 2020	
		Linear Control Systems		
	М	(Electrical and Electronics Engineering) ax. Marks: 70	e: 3 Hours	
		Answer any five questions from the following ($5 \times 14 = 70$ Marks)		
		*****		Diagona
			Marks CO	Blooms Level
1.	a)	Derive the transfer function relating input F and x_1 for the system shown in figure below		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8M	
	b)	Explain about open loop system and closed loop systems.	6M	
2.	0)	Derive the expressions for rise time, peak time and maximum peak overshoot of	OIVI	
۷.		a second order system.	14M	
3.	a)	Explain about different types of test signals.	7M	
	b)	A unity feedback system is characterized by the open loop transfer function		
		$G(s) = \frac{k}{s(s+10)}$. Determine the gain K, so that the system has a damping ratio		
		of 0.5. For this value of K, determine peak time, settling time, peak overshoot.	7M	
4.		The open loop transfer function of a control system is given by		
		$G(s)H(s) = \frac{\kappa}{s(s+6)(s^2+4s+13)}$		
		Sketch the root locus and determine		
		a. The break-away points,		
		 b. The angle of departure c. The stability condition 	14M	
5	a)	Define stability of a control system and explain about characteristic equation.	4M	
0.	b)	The open loop transfer function of a unity feedback system is		
	2)	$G(s) = \frac{K}{(s+2)(s+4)(s^2+6s+25)}$. By applying Routh Criterion, discuss the values		
		of K which will cause sustained oscillations in the closed loop system and the corresponding frequencies	10M	
6.		The open loop transfer function of a unity feedback system is given by		
0.		$G(s) = \frac{K(s+20)}{(s+1)(s+2)(s+10)}$. Construct the bode plot for K = 10 and determine the		
		phase margin, gain margin, phase crossover frequency and gain cross over frequency.	14M	
7.		The open loop transfer function of a unity feedback system is		
		$G(s) = \frac{1}{s(1+s)(1+2s)}$ Sketch the polar plot and determine the gain margin and		
		phase margin	14M	
8.	a)	Design the basic lead compensator using Bode plot	7M	
	b)	Obtain the state space representation of the field controlled DC motor	7M	

Hall Ticket Number :

Page 1 of 1

	Ha	II Ticket Number :															
l	Cor	de: 7G241													R-17		
		Tech. II Semeste	r Re	gulo	ar &	Sup	ple	mer	ntary	y Exe	amiı	natio	ons N	love	mber 20	020	
AC Machines-I																	
			(Ele	ectri	cal	and	Elec	tron	ics E	ngir	neeri	ng)		- •	0.11		
	MC	x. Marks: 70 Answer aı	nv fiv	e ai	Jesti	ons fi	rom	the f	ollow	vina	(5x	14 =	70 Mc		ne: 3 Ho	Urs	
			.,	0 90				****		, n ig	101		/ 0 ///0	, i i co j			
															Marks	СО	Blooms Level
1.	a)	Explain the construct							e tran	sforn	ners.				7M	1	L2
	b)) Explain the losses that occur in Transformers												7M	1	L2	
2.	a)	Derive the e.m.f equ	uatior	n of S	Sinal	e oha	se Ti	ransf	orme	r					7M	1	L2
	b)	Explain the effect of			-	-					tage	on co	ore los	ses.	7M	1	L2
3.	a)	Explain the principle	e and	ope	ratio	n of a	in Au	to tra	nsfor	rmer	in de	tail.			7M	2	L2
	b)	A single phase tran				•		•						•			
		% at both half load a full load.	and a	it the	TUII	ioad (of 500	J VV.	Dete	rmine	etne	effici	ency a	it 75	% 7M	4	L3
															,	•	20
4.		What is meant by 3	– ph	ase t	trans	forme	er gro	ups?	Wha	t is t	he sig	gnifica	ance o	f thes	se		
		groups? What are	the p	ossik	ole c	onne	ctions	for	a 3	– ph	ase	transf	former	banl		0	
		Explain.													14M	3	L4
5.	a)	Explain how will yo	ou pre	e det	ermi	ne th	e eff	icien	cv ar	nd re	aulat	ion b	v con	ductir	าต		
		OC & SC tests on a	•						•		•		•		7M	2	L2
	b)	A 50 kVA, 2200 V															
		efficiency of 95% a															
		Auto-transformer to power factor at 11			•	•••									•		
		increase in output										•			vo		
		winding transformer													7M	4	L3
6	2)	Evoluin the constru	otiona		toilo	of 2	nha	no in	ducti		otoro				784		
6.	a) b)	Explain the construct A 3 – phase, 50 Hz,					-						late.		7M	1	L2
	0)	(i) Speed of the mot	•							p 01	170. C	Juliu	ato.		7M	4	L4
					-	-											
7.	a)	What is circle diagra	am ar	nd wl	hat is	s its s	ignifi	cance	e? Ho	ow it	can b	be dra	awn.		7M	1	L2
	b)	Explain any one spe	eed c	ontro	ol me	thod	of 3 -	– pha	ise in	duct	ion m	notor.			7M	3	L2
0	c)	Evoloin any ana sta	ntin a			4.0	nh				+					~	
8.	a) b)	Explain any one sta Explain the principle	•				•				NOIS.				7M 7M	3 1	L2 L2
	5)		0 0	pora				ii yei	Cial	J.					7 111	1	LZ