Code: 7GC43

II B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Complex Variables and Special Functions

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

b) Find the general and principal values of $\log (1+$ ass .
2.

b) If
3. a) If ${ }_{w=\log _{z, ~ f i r ~}^{-(y)}}^{\text {Tan }} \frac{d w}{d z}$ and Describe where ${ }_{w}^{1^{2}+}$ is non-analytic.

5. a) Show tr ${ }^{\text {rat }} \int_{c_{i}} e^{-2 z} d_{z \text { is indel }}^{\frac{1}{3 z+2}}$ as a Jendent of the path ${ }_{C^{\prime} \text { joinii }}^{0<1 z 1} \mathrm{~g}$ the points $1-$ πi and $3+3^{\pi i}$. Det ϵ rmine its value.
b) Find the Taylor's series expansion of $=a$ out $^{\text {nh }}=-3$.
6. Evaluate $\int_{0}^{\prime-\pi} \frac{d \theta}{17} \frac{d x}{17-8 \cos \theta}$ by antour integration applying the calculus of residues.
7. a) ShoN that the function $w_{y}=\frac{4}{z}$ tra nsforms the straight line ${ }_{x=c}$ in the z - blane into a circle in the w-blane.
b) Find the into a pirclefformation which maps the points ${ }^{\text {it }}{ }^{\operatorname{lin}}{ }_{1,}{ }^{x}=$ onto the points $w=i, 0,-i$.
8. a) Show that the relatio ${ }_{\mathrm{n}} w_{=} \frac{5-4 z}{4 z-2} \operatorname{tra}^{\text {asforms the circle }\left.\right|_{z 1}=1 \text { into a circle }}$ of radius unity in the w - plane.
b) Find the $k_{\text {Jilinear }}^{\text {unity in }}$ transformation which maps the points $(-1,0,1)$ into the points $(0, i, 3 i)$.

II B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Field Theory and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

1. a) Point charges $5 n \mathrm{n}$ and -2 nC are located at $(2,0,4)$ and $(-3,0,5)$ respectively.
i) Determine the force on a 1 nC point charge located at ($1,-3,7$)
ii) Find the electric field E at $(1,-3,7)$
b) State Gauss law. What are the conditions required for setting up a Gaussian surface. Apply Gauss law to calculate electric field due to Infinite line Charge
2. a) Obtain an expression for potential energy present in a system of point charges. 7M
b) Given the potential field, to soten inate elect a point $P(-4,3,6)$. Find
i. Potential V at poiht \bar{P}
ii. Electric field intensity at point P.
3. a) List out the conditions to be satisfied by a dielectric material to behave as linear, homogeneous and isotropic. What happens if the dielectric material is non-linear, non-homogeneous and non-isotropic?
b) State Continuity of current equation. Derive Continuity equation. Express the Continuity equation for steady currents and what do you infer from this expression.
4. a) State Amperes law. How to select Amperian path in Magnetic field calculations.
b) Apply Amperes circuit law to determine magnetic field for Infinite line current.
5. a) A charged particle Q is moving in presence of both electric and magnetic fields, Determine the total force exerted on the moving charged particle. If the charged particle is at rest, then what will be the total force on the charged particle?
b) Explain Maxwell's equations and list all of maxwell's equations in both integral and differential forms?

8M
6. a) Define and explain Biot - Savart's law. Hence obtain the magnetic field due to a straight current carrying filamentary conductor of finite length.

6M
b) The electric field in free rrying is givel 'ary cond stor of 1

$$
E=5 c^{\prime} \cos \left(10{ }^{7} \text { by } t+\beta x\right) \text { ay } V / m
$$

i. Find the direction of wave propagation
ii. Calculate ${ }^{\beta}$
7. a) Explain and derive the concepts of Convection ,and conduction current density
b) What is Poynting vector? How is the Poynting theorem derived from Maxwell's curl equations? Explain Poynting theorem.7M
8. a) Draw an equivalent circuit of a two wire transmission line. 6M
b) Derive Propagation constant and Characteristic impedance of general transmission line. What are the conditions to be satisfied to make a
i. lossless transmission line
ii. distortionless line.

Code: 7GA41

II B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Managerial Economics and Financial Analysis

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

Marks

1. Explain the importance of economics in managerial decision making. 14 M
2. What are the different methods of demand forecasting? Explain each of them in detail.
3. What are the various types of internal economies? Explain them in brief.

14M
4. What are the important differences between perfect markets and imperfect 14M markets? Explain.
5. What are the various sources of short term finance? Explain each of them in brief.
6. Rank the following investment projects according to Net present value method, assuming the cost of capital to be 12%. .

Project	Initial outlay Rs.	Annual cash inflow Rs.	Life in Years
X	25,000	5,000	7
Y	15,000	5,000	5

7. Explain in detail about how ratio analysis is helpful in understanding financial statements.
8. The following balances are extracted from the books of Sundar on 31-12-2017. Prepare final accounts.

Particulars	Debit Rs.	Credit Rs.
Sunndar's capital		58,100
Cash at bank	5,000	
Cash on hand	2,500	
Buildings	20,000	
Machinery	25,000	
Purchases and sales	50,000	85,000
Returns	600	800
Wages	8,000	
Power and fuel	2,000	
Salaries	6,000	
Carriage outwards	1,500	
Insurance	1,300	
Rent	1,000	
Stock (01-01-2017)	18,000	
Debtors and creditors	5,000	8,000
General expenses	2,000	
Drawings	4,000	

Adjustments:
a) Closing stock: Rs.27, 000
b) Unexpired insurance: Rs. 100
c) Outstanding rent: Rs. 200
d) Write off bad debts: Rs.1, 200
e) Charge interest on capital at 5%
f) Depreciate machinery at 10%.
|| B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Pulse and Digital Circuits

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)
Marks CO

1. a) A pulse of amplitude 5 V and duration 20 sec is applied to high pass RC circuit having $\mathrm{R}=10 \mathrm{k}$ and $\mathrm{C}=1000$ pf. Calculate the output V0 (t) Sketch the output waveform. Calculate the tilt and undershoot.
b) Explain how a low pass RC circuit act as an integrator.
2. a) Derive the expression for tilt of a square wave after passing through a high pass RC Circuit.
b) Draw the output response of RC low pass circuit for a step input signal and explain in detail.

7M CO1
3. a) Describe the switching times of BJT by considering the charge distribution across the base region. Explain this for cut-off, active and saturation.

8M CO1
b) Explain the need for clamping circuits
$6 \mathrm{M} \mathrm{CO1}$
4. a) Explain the operation of positive clamper circuit using diode.
b) State and prove clamping circuit theorem with relevant circuit and waveforms

7M CO1
5. Find Lower and Upper Threshold voltage for Schmitt trigger circuits with following data. Assume transistors with $\mathrm{hfe}=30, \mathrm{VCC}=12 \mathrm{~V}, \mathrm{RC} 1=4 \mathrm{~K}, \mathrm{RC} 2=1 \mathrm{~K}$, $\mathrm{R} 1=2 \mathrm{~K}, \mathrm{Rs}=1 \mathrm{~K}, \mathrm{R} 2=6 \mathrm{~K}, \mathrm{Re}=3 \mathrm{~K}$
6. a) What is a Linear time base generator? Give its Applications.
b) Write the differences between the voltage and current time base generators?
$5 \mathrm{M} \mathrm{CO3}$
c) Why the time base generators are called sweep circuits.

4M
7. a) Explain the basic principles of Miller and bootstrap time base generators.
b) A transistor bootstrap ramp generator is to produce a 15 V , 5 ms output to a $2 k 0 h m s$ load resistor. The ramp is to be linear within 2%. Design a suitable circuit using Vcc $=22 \mathrm{~V}$, $-\mathrm{VEE}=-22 \mathrm{~V}$ and transistor with $\mathrm{hfe}(\mathrm{min})=25$. The input pulse has an amplitude of -5 V , pulse width $=5 \mathrm{~ms}$ and space width $=2.5 \mathrm{~ms}$.
8. a) What is sampling Gate? And explain the basic operating principle of gates? 7M CO4
b) Draw the circuit diagram of diode - resistor logic OR gate and explain its operation

Code: 7G341

|| B.Tech. II Semester Regular \& Supplementary Examinations November 2020 Random Variables and Random Processes

Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)
Marks

1. a) Define the following terms
i) Sample space ii) Disjoint events iii) Probability iv) independent events
b) A box contains 4 red and 5 white balls. An experiment is to draw two balls from6CO1 the box without replacement. What is the probability that the first ball is white and second ball is white?
2. a) Define a random variable. Write conditions for a function to be a random variable.
b) A random variable X has the density function $f_{X}(x)=\frac{1}{5} u(x) e^{-x / 5}$. Find the 6M CO1 probability of events i) $A=\{1<X \leq 3\}$ ii) $B=\{X \leq 2.5\}$ iii) $C=\{X>2.5\}$
3. a) Define $n^{\text {th }}$ moment about the origin and central moment of a random variable X.
b) Let X is an exponential density function. Determine Variance, Skew and The 8M CO2 coefficient of skewness of X.
4. a) Define the joint distribution function and list out its properties.
6M CO2
8 M CO 2
b) Explain the Central Limit Theorem.
$6 \mathrm{M} \quad \mathrm{CO} 2$
5. a) Define the joint density function and list out its properties.
6 M
b) Determine a constant b (in terms of a) so that the function 8 M CO2 $f_{X, Y}(x, y)=\left\{\begin{array}{rc}b e^{-(x+y)}, & 0<x<a, 0<y<\infty \\ 0, & \text { elsewhere }\end{array}\right.$ is a valid joint density function.
$\begin{array}{llll}\text { 6. a) Explain about stationary random process. } & 6 \mathrm{M} & \mathrm{CO} 3 & \mathrm{~L} 2 \\ \text { b) State and prove the properties of Auto correlation function. } & 8 \mathrm{M} & \mathrm{CO} 3 & \mathrm{~L} 5 \\ \text { 7. a) Explain the concept of Random process. } & 6 \mathrm{M} & \mathrm{CO} 3 & \mathrm{~L} 2 \\ \text { b) Consider the Random Process } X(t) \text {, defined by } X(t)=A \cos \left(2 \pi f_{c} t+\Theta\right) \text {, where } & 8 \mathrm{M} & \mathrm{CO} 3 & \mathrm{~L} 4\end{array}$ A and f_{c} are constants and Θ is a uniformly distributed random variable

$$
f_{\Theta}(\theta)= \begin{cases}1 / 2 \pi, & 0 \leq \theta \leq 2 \pi \\ 0, & \text { elsewhere }\end{cases}
$$

Examine that this Random process is Ergodic in both the mean and autocorrelation.
8. a) Define Power Spectrum. List out its properties. 6M CO4 L1
b) Develop relationship between cross-power spectrum and cross-correlation 8M CO4 L3
function.

Code: 7G343
II B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Analog Communication

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)
$* * * * * * * * *$

Marks	co	Blooms Level
8 M	1	I\&III
6 M	2	III
6 M	1	I\&II
8 M	2	III
6 M	3	I\&VI

b) The block diagram of a typical FM receiver is shown in Fig. The IF amplifier frequency is 10.7 MHz . The FM receiver is tuned to a carrier frequency of 100 MHz . If a $10-\mathrm{Hz}$ audio signal frequency modulates a $100-\mathrm{MHz}$ carrier, producing $\beta=5$. Find the bandwidth required for the RF and IF amplifiers and for the audio amplifier.

Fig: FM Receiver
8 M 2 III
4. a) The noise performance of a conventional $A M$ with envelope detector is always inferior to that of a DSB-SC receiver. Justify in-terms of figure of merit.
b) With a neat sketch explain the threshold effects in FM system?
7M 4 II\&IV
a) Derive the expression for noise power spectral density at the phase discriminator output, draw its spectrum and derive an expression for figure of merit?

8M 4 II\&VI
b) An AM receiver operating with a sinusoidal modulating signal has modulation index 0.8 and output signal to noise ratio 30 dB . What is the corresponding carrier to noise ratio.
6. a) Discuss different alignment and tracking techniques in the radio receivers?
b) Draw the block diagram of FM receiver and explain its working?

$6 M$	4	III
$7 M$	5	II
$7 M$	5	I\&II

7. a) Explain the principle of working of AGC in detail. Discuss the merits of delayed AGC as compared with simple AGC.

7M 1 II
b) Discuss the factors influencing the choice of Intermediate frequency for a radio receiver?

7 M 5 I\&II
8. a) Define and describe PPM, Explain, how a PPM signal can be generated from PWM signal?
b) With the aid of the block diagram, briefly explain Frequency division multiplexing?

