													1			
	Ha	II Ticket Number :											J	R-1	7]
		e : 7G141	_			_				_			L			
	II B.1	lech. II Semester	Reg	-					-			atio	ns No	vembe	r 2020)
			1 Co		-			-		itior gine		a)				
	Ma	x. Marks: 70		-						-				Time: 3	Hours	
		Answer an	y five	e que	estio		om th *****		llowi	ng (5 x 1	4 = 7	'0 Mark	ks)		
																Blooms
1.	a)	What is meant by 'b	us'?	Give	a de	tailec	l clas	sifica	tion	of bus	s tvp	es in	compu	Marks ter	CO	Level
	ω,	architecture.		0.10	4 40		. 010.0			01 0 0 0	5.96	00	oompa	6M	CO1	L1
	b)	Explain about sign n	•				•		• •			•		•		
		the fixed point numb	oers.	Expla	ain w	'hy 2'	s cor	npler	nent	appro	bach	is pr	eferable	e 8M	CO1	L2
2.	2)	What is the use of the	broo	ototo	buff	or2 E	volai	n ita	funct	ion w	ith a	noot	ekoteb	of		
۷.	a)	logic symbol.		Siale	Dun		лріаі	11 113	iunci		iii a	neat	SKEIGH	6M	CO2	L2
	b)	Summarize all the 1	6 log	jic mi	cro o	pera	tions	with	a coi	mpreł	nens	ive tr	uth tabl	le. 8M	CO2	L2
3.	a)	Write a brief note or					•							6M	CO2	L1
	b)	How does a process with a neat sketch o				exter	nal in	terru	pt? E	xplai	n the	inter	rupt cy	cle 8M	CO2	L2
		with a fleat sketch o	nan		ian.									OIVI	002	LZ
4.		With a neat sketch	of b	lock	diag	ram (expla	in th	e fur	nction	al ur	nits c	of a mic	cro		
		programmed contro			-									14M	CO3	L1
_							_							_		
5.	a)	Explain the differe memory.	ent m	nappi	ing t	echn	ique	s us	ed ir	n the	usa	age (of Cac		CO3	L2
	b)	Compare and contra	ast b	etwe	en th	e ha	rdwir	ed ar	nd mi	cro p	roara	amm	ed cont		003	LZ
	~)	units.								•.• P	. e g. e			8M	CO3	L2
6.		Illustrate the steps							•		•					1.2
		multiplication signed		ary nu	JUUDE	IS WI	In no	WCHa	in an	a nur	nenc	arex	amples	5. 14101	CO4	L2
7.	a)	What is an Input-Out	put p	roces	sor?	Expla	ain th	e nee	ed for	Input	-Out	put p	rocesso	or 8M	CO5	L1
	b)	State the differer				-				-						
		communications. W	ith a	neat	sketc	ch of f	frame	e forn	nat, e	xplai	n the	cond	cept of l			
		oriented protocols.												6M	CO5	L2
8.	a)	Explain the working	а of Г	OMA										8M	CO5	L5
2.	ي b)	What is the impact	-			pend	encie	es in	аp	progra	am t	hat o	offset t		000	_0
	,	performance of pipe	elineo	d arc		•			•	•				his		
		conflict can be conti	rolled	l.			****	**						6M	CO5	L2

	На	III Ticket Number :														
(Cod	e: 7G142	J.	1	1	L	1	1				I	R	-17		
		Tech. II Semester	Regula	r & S	Supp	olen	nent	tary	Exa	min	atio	ns No	ovemb	ber 20	20	
			Design			-			-							
	Ma	x. Marks: 70	(Comp	outer	Scie	ence	e ano	d En	gine	ering	g)		Time	3 Hou	irc	
	MG	Answer any	r five que	estio	ns fro	om th	ne fo	llowi	ng (5 x 1.	4 = 7	0 Mai		01100	513	
					:	*****	****									Blooms
1.		Define Time and Sp	aco Com	nlovi	tv of	20.2	laorit	hm	Evol	oin h	ow to		oss tha	Marks	CO	Level
1.		complexity in asymp		-	-	ana	igon		схріа			expire		14M	1	1
															•	
2.		Discuss the steps in	Mathema	atical	anal	ysis f	for re	cursi	ve al	gorith	nms.	Do the	e same			
		for finding the factori	al of num	ber.						-				14M	1	6
3.		Explain the working	0	Sort	Algo	rithm	with	an ex	kamp	le. G	ive th	ne ana	lysis of		_	_
		Merge sort algorithm	l .											14M	2	2
4.	2)	Explain the method			aomi		aron	omin	~ I i	ot th	0 00	nlicati	ione of			
4.	a)	Dynamic programmi		Dyi	anno	s pro	yran	mmi	у. LI	51 11	e ap	plicati		4M	3	2
	b)	Explain reliability des	•	lem v	vith a	n exa	ample	э.						10M	3	2
5.		Explain the Travelling	g salesm	an pr	obler	n usi	ng D	ynam	nic Pr	ogra	mmir	ng.		14M	3	2
6.	a)	Solve the following	instance	a of	knar	eack	nro	hlom	ueir	ha hr	anch	band	bound			
0.	aj	algorithm with W=15		. 01	κιαρ	-340N	pio	DICITI	usii	ig bi	anon		bound			
		Item Weig	-													
		1 5 2 7														
		3 2														
		4 4	•													
		5 5	\$10													
		6 1	\$2											7M	4	3
	b)	Develop the pseudo	code for k	maps	sack	oroble	em u	sing b	oranc	h and	d bou	nd alg	jorithm.	7M	4	3
7.	c)	Discuss in detail abo		mole		oblo	~ ~							014	F	C
1.	a) b)			•										8M	5	6
	b)	List examples of prol			omp	ele F		51115.						6M	5	1
8.	a)	What is the relations	ship betw	een l	P, NF	P, NF	PC cla	asses	s? W	hat d	o yo	u unde	erstand			
	,	by Polynomial time r	•								-			8M	5	1
	b)	Explain COOK's The	eorem.											6M	5	2
						***	* *									

	Hall	Ticket Number :			٦
L	Cod	e: 7G143	R-17		
		Tech. II Semester Regular & Supplementary Examinations Nover Formal Languages and Automata Theory (Computer Science and Engineering)	nber 2	2020)
	Ma	x. Marks: 70 Answer any five questions from the following (5 x 14 = 70 Marks) *********	ie: 3 H	ours	
			Marks	со	Blooms Level
1.	a)	Construct a Melay machine to determine the residue mod 3 for each binary string treated as a binary integer.	7M	1	L2
	b)	Design FA which accepts even number of 0's and even number of 1's.	7M	1	L5
2.	a)	Design DFA for the set of all strings that either begins or ends or both with 'ab'.			
		Also explain applications of automata theory.	7M	1	L5
	b)	Explain the minimization of FSM and equivalence between two FSMs.	7M	1	L3
3.	a)	Explain closure properties of regular languages.	7M	2	L1
	b)	Prove or disprove that the language L given by $L = \{ a^m b^n / m n, m and n are positive integer \}$ is regular.	7M	2	L3
4.	a) b)	Differentiate between CNF and GNF with suitable examples. Define CNF and convert the following grammar into CNF. $S \rightarrow aAD$ $A \rightarrow aB / bAB$ $B \rightarrow b$	7M		L2
		D→d	7M	3	L4
5.	a) b)	Show that L= $\{a^{i}b^{j}/j=i^{2}\}$ is not context free language. Convert given CFG to GNF where V= $\{S,A\}$, T= $\{0, 1\}$ and P is S \rightarrow AA / 0	7M	3	L3
		A→SS / 1	7M	3	L4
6.	a)	Let G be a CFG that generates the set of palindromes given by $S \rightarrow aSa / bSb / a / b$			
	۲	Find the PDA that accepts L(G) and simulate for input abbbbba.	7M	4	L2
	b)	Construct the PDA that recognizes the language L={ $x=x^R / x$ belongs to {a, b} ⁺ .	7M	4	L4
7.	a)	Discuss about Universal Turing Machine and operations on Turing Machine.	7M	5	L2
	b)	Design Turing Machine for palindrome over $= \{a, b\}.$	7M	5	L5
8.	a)	Compare Finite Automata, Push down Automata and Turing Machine with			
		suitable examples.	7M	5	L4
	b)	Design Turing Machine for 2's complement where $= \{0,1\}$.	7M	5	L5

	Hal	I Ticket Number :														7
ا د	Code	e: 7G144												R-1	7	
		ech. II Semester Obj e	ect	Orie	ente	ed P	rog	ram	mir	ng U	sing	g Ja		ovembe	er 2020)
	Max	k. Marks: 70 Answer an	·			ns fro		ne fo		gine ng ('0 Ma	Time: 3 rks)	Hours	
														Marks	СО	Blooms Level
1.	a)	List and explain the	char	acte	ristics	s of ja	ava la	angua	age					8M	1	1,5
	b)	Write a java progra	m to	print	the F	asca	al tria	ngle						6M	1	3
2.		How many types of			-	iers a	are si	oqqu	rted l	oy ja∖	/a? E	xpla	in eac			
		with suitable examp	ole pr	ogra	m.									14M	1	1,2
3.	a)	Differentiate betwee	en ov	erloa	ding	and	overi	iding						5M	2	4
	b)	List the advantages	of pa	acka	ges c	over o	classe	es.						5M	2	1
	c)	Explain the importa	nce c	of dyr	namio	c met	thod	dispa	itch u	sing	java			4M	2	2
4.	a)	Explain with exam	nple	prog	gram	the	imp	ortan	ce c	of int	erfac	ces i	in jav		0	F
	L.)	programming.				1				_				10M	2	5
	b)	Illustrate the use of	supe	er key	/worc	i witr	i resp	ect t	o java	a				4M	2	2
5.	a)	Distinguish between				•	•					- 0. 11	((4M	3	4
	b)	What is an exception with suitable example		HOW	can	we c	reate	our	own	exce	ption	S? II	lustrat	e 10M	3	1,2
6.	a)	With the help of an		•	progr	am e	explai	n ho	w we	can	retur	n the	value		Л	F
	b)	from a lambda expr												7M 7M	4	5
	b)	Write about the ger	ierici	Interi	aces	•								7M	4	2
7.		Discuss in detail ab	out th	ne co	ollecti	on in	terfa	ces						14M	5	6
8.	a)	Give brief description	on ab	out T	reeS	set cl	ass?							7M	5	1
	b)	List the various con	struc	tors	prese	ent in	Sca	nner	class					7M	5	1
							***	*								

	F	all Ticket Number :															T
	Со	ode: 7G145	1	1	1			1	1	1	l	1	.1		R-1	7	
	II B	3.Tech. II Semester	Reg	gulo	ır & 3	Sup	plen	nen	tary	Exa	ımin	atio	ns N	000	embei	⁻ 2020)
					-		ting	•				,					
	м	ax. Marks: 70	(C)	omp	uter	2CIE	ence	anc	d Ené	gine	ering	3)		Ti	ime: 3	Hours	
		Answer an	y five	e qu	estio	ns fro			llowi	ng (5 x 1	4 = 7	0 Ma				
							*****	****							Marks	со	Blooms
1.	a)	Define System Calls	and	Svst	em C	Comn	nands	s in C	Dpera	atina	Svst	em. \	Nhat	are		00	Level
		the different System	calls	•					•	•	•						
		of a program or proce													8M	CO1	L1
	b)	Discuss any one proc	ess s	sche	duling	g algo	orithn	า.							6M	CO1	L5
2.	a)	Compare between the	≏ follo	wind	n												
۷.	u)	i) Paging and Segme			9												
		ii) Page table and seg	gmen	t tab	le										6M	CO2	L4
	b)	What are semaphore	s? Ex	xplai	n two	prim	nitive	sema	aphoi	re op	eratio	ons. V	What	are			1.5
		its advantages?													8M	CO2	L5
3.	a)	What are co-operatin	na pr	oces	ses?	Des	cribe	the	mech	anis	m of	inter	proc	ess			
		communication using	• •										•			CO2	L1
	b)	What are two advanta	•						•	•				-			
		disadvantages do the the use of threads	ey ha	ve?	Sugg	est c	one a	pplica	ation	that	woul	d ber	nefit fi	rom		CO2	L1
																002	
4.	a)	What is virtual memo	ry? H	low i	t cou	ld be	imple	emer	ited i	n our	. ope	rating	g syste	em.			
		Explain with example														CO3	
	b)	Illustrate logical addre	ess s	pace	and	phys	ical a	lddre	ss sp	ace.					6M	CO3	L2
Б	a)	Compare about interr	ol fre	amo	ontati			torno	lfrog	mon	tation				7M	000	L4
5.	a) b)	Discuss classic proble		•						men	lalioi	ı.				CO3 CO3	L4 L5
	2)				0111 01		01111	aota								000	20
6.		What are the various	disk s	sche	duling	g poli	cies?	Wha	t are	the c	criteri	a for	selec	ting			
		a Disk Scheduling Alg	gorith	m?											14M	CO4	L2
-		0			(400		500 1										
7.		Given five memory pa (in order), how would															
		processes of 212 KB,	417	KB,	112	KB, a	and 42				-		•				
		makes the most effici	ent u	se of	fmer	nory	?								14M	CO4	L1
Q	a)	With regards to I/O do	acian	nrin	cinlo	e dor	scribo	the	lavor	e of t	he I/		stem	and			
υ.	a)	justify this structure.	csiyi	i piili		s ues	SCIDE		ayer	3 01 1		U Sys		anu	8M	CO5	L5
	b)	Explain different meth	nods	used	l to so	olve t	he pr	obler	n of s	secur	ity at	the c	opera	ting			
		system level													6M	CO5	L4

Hall Ticket Number :						[]	
Code: 7GC42						R-17	

II B.Tech. II Semester Regular & Supplementary Examinations November 2020 **Probability and Statistics**

(Common to Civil Engineering, ME & CSE)

Time: 3 Hours

Answer any five questions from the following ($5 \times 14 = 70$ Marks)

Marks

7M

7M

7M

7M

7M

- a) Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and 15 orange marbles, with replacement being made after each drawing. Find the probability that (i) both are white (ii) first is red and second is white.
 - b) The diameter of an electric cable say X is assumed to be a continuous random variable with Probability density function

f(x) = 6x(1-x); $0 \le x \le 1$.

Find mean and variance.

Max. Marks: 70

- 2. a) State and prove Baye's theorem.
 - b) The cumulative distribution function of a continuous random variable
 X is given by

$$F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x < 1/2 \\ 1 - \frac{3}{25}(3 - x)^2, & (1/2) \le x < 3 \\ 1, & x \ge 3 \end{cases}$$
 7M

Find the pdf of x and evaluate $P((1/3) \le X < 4)$.

- a) In a large consignment of electric bulbs 10% are defective. A random sample of 20 is taken for inspection. Find the probability that
 - (i) All are good bulbs.
 - (ii) At most there are three defective bulbs.
 - (iii) Exactly there are three defective bulbs.
 - b) The weekly wages of 1000 workmen are normally distributed around a mean of Rs.70 with a standard deviation of Rs.5. Estimate the number of workers whose weekly wages will be (i) Between Rs.69 and Rs.72 (ii) Less than Rs.69 (iii)More than Rs.72.
- 4. a) Fit a Poisson distribution for the following data and calculate the expected frequencies

х	0	1	2	3	4	5	
f(x)	142	156	69	27	5	1	7M

- b) Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii)
 5 girls (iii) either 2 or 3 boys? Assume equal probabilities for boys and girls.
- 5. a) A population consists of the four numbers 3, 7, 11, 15. Consider all possible samples of size
 2 which can be drawn with replacement from this population. Find the population mean and standard deviation, and mean and standard deviation of the sampling distribution of means. 7M
 - b) The standard deviation of the life-times of television tubes manufactured by a company is estimated as 100 hours. Find how large a sample must be taken in order to be 99% confident that the error in the estimated mean life-time will not exceed 20 hours

7M

7M

Page 2 of 2

Code: 7GC42

- 6. a) Random samples of 400 men and 600 women were asked whether they would like to have a flyover near their residence.200men and 325 women were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of the proposal are same at 5%level.
 - b) Two random samples gave the following data

sizemeanVarianceSample I89.61.2Sample II1116.52.5

Is the difference between means significant?

7. The following data give the number of air-craft accidents that occurred during the various days of a week

Day	Mon	Tue	Wed	Thu	Fri	Sat
No. of accidents	15	29	13	12	16	15

Test whether the accidents are uniformly distributed over the week.

8. Two random samples drawn from two normal populations have the variable values as below:

Sample1	19	17	16	28	22	23	19	24	26			
Sample2	28	32	40	37	30	35	40	28	41	45	30	36

Obtain the estimate of the variance of the population and test whether the two populations have the same variance.

7M

7M

14M

14M