Code: 7G141

II B.Tech. II Semester Regular \& Supplementary Examinations November 2020
 Computer Organization
 (Computer Science and Engineering)
 Max. Marks: 70
 Time: 3 Hours

Answer any five questions from the following ($5 \times 14=70$ Marks)

1. a)			What is meant by 'bus'? Give a detailed classification of bus types in computer		
architecture.				\quad	Clooms
:---	:---	:---	:---		
Level					

2. a) What is the use of three-state buffer? Explain its function with a neat sketch of logic symbol.

6M
CO2
b) Summarize all the 16 logic micro operations with a comprehensive truth table.

8M CO2
3. a) Write a brief note on instruction set completeness.

6M CO2
b) How does a processor react to an external interrupt? Explain the interrupt cycle with a neat sketch of a flow chart.

8M CO2
4. With a neat sketch of block diagram explain the functional units of a micro programmed control unit.

14M CO3
5. a) Explain the different mapping techniques used in the usage of Cache memory.
b) Compare and contrast between the hardwired and micro programmed control units.

8M CO3
6. Illustrate the steps involved in Booth's multiplication algorithm for the multiplication signed binary numbers with flowchart and numerical examples.

14M CO4
7. a) What is an Input-Output processor? Explain the need for Input-Output processor
b) State the differences between full and half-duplex serial mode of communications. With a neat sketch of frame format, explain the concept of bitoriented protocols.

8M cos
8. a) Explain the working of DMA.

8M CO5
b) What is the impact of data dependencies in a program that offset the performance of pipelined architectures? Cite any two methods by which this conflict can be controlled.

Code: 7G142

II B.Tech. II Semester Regular \& Supplementary Examinations November 2020 Design and Analysis of Algorithms
 (Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

1. Define Time and Space Complexity of an algorithm. Explain how to express the complexity in asymptotic notations.
2. Discuss the steps in Mathematical analysis for recursive algorithms. Do the same for finding the factorial of number.
3. Explain the working of Merge Sort Algorithm with an example. Give the analysis of Merge sort algorithm.
4. a) Explain the methodology of Dynamic programming. List the applications of Dynamic programming.
b) Explain reliability design problem with an example.

10M 32
5. Explain the Travelling salesman problem using Dynamic Programming.

14 M 32
6. a) Solve the following instance of knapsack problem using branch and bound algorithm with $\mathrm{W}=15$.

Item	Weight	Profit
1	5	$\$ 40$
2	7	$\$ 3$
3	2	$\$ 18$
4	4	$\$ 4$
5	5	$\$ 10$
6	1	$\$ 2$

b) Develop the pseudo code for knapsack problem using branch and bound algorithm.

7M 43
$7 \mathrm{M} \quad 4 \quad 3$
7. a) Discuss in detail about NP Complete Problems.
b) List examples of problems in NP Complete Problems.
$8 \mathrm{M} \quad 5 \quad 6$
$\begin{array}{lll}6 M & 5 & 1\end{array}$
8. a) What is the relationship between P, NP, NPC classes? What do you understand by Polynomial time reducibility?
$\begin{array}{lll}8 \mathrm{M} & 5 & 1\end{array}$
b) Explain COOK's Theorem.
$6 \mathrm{M} \quad 5 \quad 2$

\square

Code: 7G145

|| B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Operating Systems

(Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five questions from the following ($5 \times 14=70$ Marks)

1. a) Define System Calls and System Commands in Operating System. What are the different System calls available to support creation, execution and storage of a program or process?

8M CO1
L1
b) Discuss any one process scheduling algorithm.
$6 \mathrm{M} \mathrm{CO1}$
2. a) Compare between the following
i) Paging and Segmentation
ii) Page table and segment table

6M CO2
b) What are semaphores? Explain two primitive semaphore operations. What are its advantages?

8M CO2
L5
3. a) What are co-operating processes? Describe the mechanism of inter process communication using shared memory in a producer-consumer problem

7M CO2
b) What are two advantages do threads have over multiple processes? What major disadvantages do they have? Suggest one application that would benefit from the use of threads

7M CO2
4. a) What is virtual memory? How it could be implemented in our operating system. Explain with example.
b) Illustrate logical address space and physical address space.
5. a) Compare about internal fragmentation and external fragmentation.
b) Discuss classic problem of synchronization in detail?

7M CO3
L4
$7 \mathrm{M} \mathrm{CO3}$
L5
6. What are the various disk scheduling policies? What are the criteria for selecting a Disk Scheduling Algorithm?

14M CO4
L2
7. Given five memory partitions of $100 \mathrm{~KB}, 500 \mathrm{~KB}, 200 \mathrm{~KB}, 300 \mathrm{~KB}$, and 600 KB (in order), how would each of the first-fit, best-fit, and worst-fit algorithms place processes of $212 \mathrm{~KB}, 417 \mathrm{~KB}, 112 \mathrm{~KB}$, and 426 KB (in order)?Which algorithm makes the most efficient use of memory?

14M CO4
L1
8. a) With regards to I/O design principles describe the layers of the I/O system and justify this structure.

8M CO5
L5
b) Explain different methods used to solve the problem of security at the operating system level

6M CO5
L4
\square
Code: 7GC42
|| B.Tech. II Semester Regular \& Supplementary Examinations November 2020

Probability and Statistics

(Common to Civil Engineering, ME \& CSE)
Max. Marks: 70
Answer any five questions from the following ($5 \times 14=70$ Marks)
$* * * * * * * * *$

Marks
b) The diameter of an electric cable say X is assumed to be a continuous random variable with Probability density function
$f(x)=6 x(1-x) ; 0 \leq x \leq 1$.

Find mean and variance.
2. a) State and prove Baye's theorem.
b) The cumulative distribution function of a continuous random variable

X is given by

$$
F(x)=\left\{\begin{array}{ll}
0, & x<0 \\
x^{2}, & 0 \leq x<1 / 2 \\
1-\frac{3}{25}(3-x)^{2}, & (1 / 2) \leq x<3 \\
1, & x \geq 3
\end{array}\right\}
$$

Find the pdf of x and evaluate $P((1 / 3) \leq X<4)$.
3. a) In a large consignment of electric bulbs 10\% are defective. A random sample of 20 is taken for inspection. Find the probability that
(i) All are good bulbs.
(ii) At most there are three defective bulbs.
(iii) Exactly there are three defective bulbs.
b) The weekly wages of 1000 workmen are normally distributed around a mean of Rs. 70 with a standard deviation of Rs.5. Estimate the number of workers whose weekly wages will be
(i) Between Rs. 69 and Rs. 72
(ii) Less than Rs. 69
(iii)More than Rs. 72.
4. a) Fit a Poisson distribution for the following data and calculate the expected frequencies

x	0	1	2	3	4	5
$f(x)$	142	156	69	27	5	1

b) Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3 boys? Assume equal probabilities for boys and girls.7M
5. a) A population consists of the four numbers $3,7,11,15$. Consider all possible samples of size 2 which can be drawn with replacement from this population. Find the population mean and standard deviation, and mean and standard deviation of the sampling distribution of means.7M
b) The standard deviation of the life-times of television tubes manufactured by a company is estimated as 100 hours. Find how large a sample must be taken in order to be 99% confident that the error in the estimated mean life-time will not exceed 20 hours
6. a) Random samples of 400 men and 600 women were asked whether they would like to have a flyover near their residence. 200 men and 325 women were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of the proposal are same at 5\%level.
b) Two random samples gave the following data

	size	mean	Variance
Sample I	8	9.6	1.2
Sample II	11	16.5	2.5

Is the difference between means significant?
7. The following data give the number of air-craft accidents that occurred during the various days of a week

Day	Mon	Tue	Wed	Thu	Fri	Sat
No. of accidents	15	29	13	12	16	15

Test whether the accidents are uniformly distributed over the week.
8. Two random samples drawn from two normal populations have the variable values as below:

Sample1	19	17	16	28	22	23	19	24	26			
Sample2	28	32	40	37	30	35	40	28	41	45	30	36

Obtain the estimate of the variance of the population and test whether the two populations have the same variance.

