Hall Ticket Number :						

Code: 19A141T

R-19

II B.Tech. II Semester Regular Examinations August 2021

Building Planning & Environment

(Civil Engineering)

			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Explain the importance of wall thickness in byelaws of buildings	7M	CO1	L2
	b)	Explain the consideration of the height of buildings as per building bye-laws	7M	CO1	L2
		OR			
2.	a)	Explain the objectives of building byelaws	7M	CO1	L2
	b)	Explain the principles of building byelaws	7M	CO1	L2
		UNIT-II			
3.	a)	Explain in detail the various requirements of different rooms and their grouping.	7M	CO2	L2
	b)	Explain clearly different principles involved in planning a residential building.	7M	CO2	L2
		OR			
4.		Write short notes on:			
		(a) Characteristics of various types of residential building			
		(b) Architectural Principle	14M	CO2	L2
_	,	UNIT-III (III)			
5.	a)	Explain in detail with neat sketch about planning of bank building.	9M	CO3	L2
	b)	Write the importance and necessity in planning of hospitals.	5M	CO3	L2
•	٠,١	OR	014		
6.	a)	Write the importance and necessity in planning of educational institutes.	9M	CO3	L2
	b)	Write the importance and necessity in planning of dispensaries	5M	CO3	L2
7	٠,١	UNIT-IV			
7.	a)	Explain the importance of computations of time and float and explain the phenomenon.	10M	CO4	L4
	h)	·	4M		L2
	b)	Explain CPM and PERT network plan OR	4111	CO4	LZ
8.	a)	Describe the features and uses of network planning in detail.	7M	CO4	L2
0.	b)	Describe the BAR CHART and the limitations of a bar chart with an example	7M	CO4	L2
	υ,	UNIT-V	7 141	004	
9.		Explain the impact of construction on the environment	14M	CO5	L2
		OR			
10.		Explain the terms:			
		I.Heat balance			
		II.Human Physiology			
		III.Metabolism IV.Clothing	14M	CO5	L2

Hall Ticket Number :					

Code: 19A142T

R-19

II B.Tech. II Semester Regular Examinations August 2021

Concrete Technology

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	СО	Blooms Level
4	-\	UNIT-I	71.4		
1.	a)	Describe the Bogue chemical compound composition of Portland Cement.	7M	CO1	L2
	b)	Describe the hydration reaction of important Bogue compounds indicating the products of hydration.	7M	CO1	L2
		OR			
2.		How are aggregates classified? Define fineness modulus. Give the practical range of fineness modulus values for coarse and fine aggregates.	14M	CO1	L2
2		What are the various factors which effect the weakehility of concrete?	4 4 5 4		
3.		What are the various factors which affect the workability of concrete? OR	14M	CO2	L4
4.		What are the tests carried out in the fresh stage of self-compaction concrete to			
4.		determine its properties? Explain any three of them with neat sketches.	14M	CO2	L4
		UNIT-III			
5.		Define curing. What are the various methods used for curing of concrete?	14M	CO3	L4
		OR			
6.		Define dynamic modulus of concrete. How can the dynamic modulus of concrete be determined?	14M	CO3	L2
		UNIT-IV			
7.		Design a concrete mix as per IS 10262: 2009, for the following data:			
		Characteristic strength f _{ck} at 28 days: 20 N/mm ² . Cement to be used: Ordinary Portland,			
		Workability = low,			
		Coarse aggregate: 20 mm,			
		Fine aggregate = Natural Sand.			
		Specific gravity of fine aggregate = 2.7. Specific gravity of coarse aggregate = 2.8.	14M	CO4	L4
		OR			
8.		List the methods used for mix proportioning indicating the drawbacks of each			
		method.	14M	CO4	L4
		UNIT-V			
9.	a)	What is the significant difference between mixture proportioning of normal weight concrete and light weight concrete?	10M	CO5	L5
	b)	What are the typical ranges of aggregate unit weight for making structural light weight concrete? Explain.	4M	CO5	L5
		OR			
10.		List the applications of fibre-reinforced concrete. What are the basic properties of fibre reinforced concrete which can be advantageously made use of in the design of structural elements?	14M	COF	1.5
		END	I TIVI	000	L5

Hall Ticket Number :					

Code: 19A144T

R-19

II B.Tech. II Semester Regular Examinations August 2021

Hydraulics Engineering

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) Blooms Marks CO UNIT-I

Level 1. a) Discuss the phenomenon of separation for flow over curved surfaces, what are the methods used to prevent the separation 7M L2 How will you determine whether a boundary layer flow is attached flow 7M L1 7M L2 2. a) What do you understand by displacement & momentum thickness b) The velocity distribution in a boundary layer is $\frac{u}{v} = 2 \frac{y^{\text{lcknes}}}{(\delta) - (\delta)^2}$ that 7M L3 UNIT-II For the most economical section of a trapezoidal section prove that M = H/2, Half 3. L5 of top width = length of one of the sloping side 14M Define specific energy and draw the specific energy diagram. Explain how it is 4. 14M L5 useful for the open channel flow. UNIT-III A jet of water strikes a fixed flat plate with a velocity V. Which is inclined at ϕ to the jet direction. Prove that $Fn = \rho aV^2 \sin \phi$ 7M L4 b) A jet of water coming out of a nozzle of 10cm diameter with a velocity of 40m/sec Strikes a flat plate find the work done, power developed 7M L4

6. A jet of water strikes to a moving blade which has a velocity of 10m/sec. The jet enters the blade at an angle 30° and leaves at 160° to the direction of blade motion. Find the absolute velocity of jet at the entry and exit. 14M L5

UNIT-IV 7. A Kaplan turbine develops 11mW under a head of 4.3m. Find the diameter and

speed of the runner. Take speed ratio = 1.8, flow ratio = 0.5, Db = 0.35 Do and 14M

 $\eta_0 = 0.9$ L5

a) What do you understand by modeling? What are the required conditions for model testing?

7M L2 b) What are constant efficiency curves? 7M L2

UNIT-V

9. A multistage pump is to be designed to like the water through a total head of 140M, when running at 1000 rpms delivered 0.2m³/sec of water. Find the number of stages required when specific speed of each stage is 30. L6 14M

Explain the direct & indirect benefits of a hydroelectric power plants 7M L2 10. a) 7M L2

How can you classify the hydroelectric power plants?

END

Hall Ticket Number :						

Code: 19AE41T

R-19

II B.Tech. II Semester Regular Examinations August 2021

Managerial Economics and Financial Accounting

(Common to CE & ME)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Discuss the nature and scope of Managerial economics. Identify its nature			
		through its definitions.	7M	1	L1
	b)	Describe the various factors involved in Demand forecasting of a product	7M	1	L2
		OR			
2.	a)	What is managerial economics? Explain its relation with the other subjects.	7M	1	L1
	b)	Outline the significance of demand forecasting methods. State Regression			
		method of demand forecasting.	7M	1	L4
		UNIT-II			
3.	a)	State Iso-quants and Iso-costs and their characteristics	7M	2	L3
	b)	What are the managerial uses of breakeven analysis?	7M	2	L1
		OR			
4.	a)	Explain the Law of returns to scale. State how it indicates production behaviour.	7M	2	L2
	b)	Determine BEP, P/V Ratio and Sales level for a profit of Rs.15.00 Lakhs, if			
		Fixed Cost is Rs.25.00 Lakhs, Sales is Rs.175.00 Lakhs and Variable Cost is	71.4	_	
		Rs.170.00 Lakhs.	7M	2	L3
_	٠,١	UNIT-III	71.4	0	1.4
5.	a)	Define markets and describe the features of perfect competition.	7M	2	L1
	b)	Differentiate the features of Monopolistic & Oligopolistic Markets.	7M	2	L2
		OR			
6.	a)	Distinguish between monopolistic and oligopolistic markets.	7M	2	L2
	b)	Differentiate features of Private Limited Company to that of Public Limited		_	
		Company?	7M	2	L2
_	,	UNIT-IV	71.4	_	
1.	a)	Define Capital and outline its significance in financial management	7M	3	L4
	b)	Compare merits & demerits of Pay Back Period & Accounting Rate of Return	71.4	2	1.5
		Methods	7M	3	L5
_	,	OR			
8.	a)	Summarise the various sources of raising capital	7M	3	L2
	b)	Determine the average rate of return for a period for a project which requires -			
		Cash- outlay of Rs.10,000 and generates cash inflows of Rs.2,000, Rs.4,000,	71.1	2	ΙO
		Rs.3,000and Rs.2, 000 in the first, second, third, and fourth year respectively	7M	3	L2

Code: 19AE41T

UNIT-V

9. a) Define accounting. What do you understand by Double Entry System of book-keeping?

7M 3 L2

b) Identify the Ratios that are used to find the soundness and strength of long-term financial position of a firm.

7M 3 L1

OR

- 10. From the following Trial Balance, prepare final accounts of M/s Janardhan enterprises as on 31-03-2021. Taking into account the following adjustments.
 - a) Closing stock Rs. 4000
 - b) Prepaid salaries Rs. 300
 - c) Bad Debts Rs. 500
 - d) Reserve for Bad debts 5%
 - e) Depreciation of Premises 5%.

Trial Balance of M/s Janardhan Enterprises

Particulars	Amount (Rs.)	Amount (Rs.)
Opening stock	1000	20000
Purchases	4000	200
Sales Returns	500	6000
Carriage inwards	600	600
Wages	700	
Salaries	1000	
Interest	300	
Trade expenses	400	
Debtors	8000	
Bad debts	300	
Business premises	6000	
Bills receivable	4000	
total	26800	26800

END

14M 3

L2

Hall Ticket Number :							
1 404 6445						:	R-19

Code: 19AC41T

II B.Tech. II Semester Regular Examinations August 2021

Numerical Methods & Probability and Statistics

(Common to CE & ME)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		*****			,
			Marks	СО	Blooms Level
1.	a) b)	Determine a root correct to three decimal places for the equation $x^3-x-2=0$ using Newton Raphson method. Find the polynomial set to y using Lagrange's formula and hence find from the following $d_{\text{stat}}^{(x)}$ by	7M	CO1	L3
		1 3 4 6 648 704 729 792 OR	7M	CO1	L1
2.	a) b)	Find the root of the equation	7M	CO1	L1
		1 2.5 3.2 4.1 5.6	7M	CO1	L2
3.	a)	Runge-Kutta method of fo	7M	CO2	L3
	b)	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $\frac{1.2}{x}$ = 1.2 for the following data $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $\frac{1.1}{x}$ = 1.2 for the following data $\frac{dy}{dx}$ = 1.2 for the following data \frac	7M	CO2	L1
		OR			
4.	,	Evaluate $\int_{0}^{1} \frac{1}{x^2+1} \frac{7.213}{dx}$ (i) Trapezoidal rule, (ii) Simpson's 1/3 rule.	7M	CO2	L3
	b)	Apply find $x = 1$ defined in obtain, rule, (ii) $y = 1 - y$, $y = 0$.	7M	CO2	L3
5.	a)	$X \text{ i s a col tin } x, \qquad 0 \leq x < 2$ by $f(x) = \begin{cases} \binom{k}{2}k, & 2 \leq x < 4 \text{ then } \\ -kx + 6k, 4 \leq x < 6 \end{cases}$			
	b)	Find i) k , ii) mean iii) variance Fit a Poisson distribution to the following data given the number of yeast cells per square for 400 squares:	7M	CO3	L1
		No. of. Cells per sq: 0 1 2 3 4 5 6 7 8 9 10			
		No. of squares 103 143 98 42 8 4 2 0 0 0 0	7M	CO3	L2

OR

													Cod	de: 19	AC41T	
6.	a)	A random vari	iable <i>x</i> h	as the	prob	ability	y func	tion								
			× h	0 2k	1 3 k 6	2 6 ² / _k 2	7k 8	4 1	5 1k	6 12 _k						
		(i) Find the value	ue of the	k, (ii) Eval	luate ^F	?(X <	4), P	$(X \ge 1)$	3).				7M	CO3	L3
	b)	The mean hei	ning that	the h	eights	s are	norma	ally d								
		students' heig	ints lie be	etwee			1	m.						7M	CO3	L2
7	a)	One type of a	ircraft is	found		UNIT-		na tr	ouble	in 5	fliahte	e out a	of a			
,.	a,	total of 100 an a significant d are concerned	nd anothe ifference	er type	e in 7	flights	s out c	of a to	otal of	200 1	flights	s. Is th	ere	7M	CO4	L4
	b)	If in a random junction 157 of drivers make significance	n sample drove int	o the	wror	ng lan	e, tes	t wh	ether	actua	ally 3	0% of	fall	7M	CO4	L4
		oigimodrioc				OR	ı							7 1 1	004	LT
8.	a)	If random sam with s.d. $s_1 = 3$ s.d. $s_2=162.53$ income for me	397.7 wh 23, test	nile 32 at 0.0	wom 05 le	42 m nen ea vel of	en ea arn on signi	the	avera	ige x2	= 51	6.78 v	with	7M	CO4	L4
	b)	Out of two ve work 13 times in 250 trials. T	in 250 t est at 0.	rials a 05 lev	nd se el of	econd signif	mach icance	nine f e, wh	ails to ether	work the c	c 7 tir liffere	nes	s to			
		between the c	correspor	nding	_			ons is	sign	ifican	t.			7M	CO4	L4
9.	a)	A machinist is sample of 10 p of 0.04 inch. (inferior?	arts show	vs me	part an dia	amete	axle (2 incl	n with	a staı	ndard	l devia	tion	7M	CO5	L2
	b)	Marks obtaine coaching are g			tics b	oy 11	stude	nts b	efore	and	after	inten	sive			
		Before 2	24 17	18	20	19	23	16	18	21	20	19				
		After 2	24 20	22	20	17	24	20	20	18	19	22				
		Test at 0.05 L	O.S. wh	ether	the in	tensiv	e coa	ching	is us	eful?				7M	CO5	L2
						OR										
10.		The household	d net exp	enditu	re on	healtl	n care	in so	uth a	nd no	rth Ind	dia, in	two			

10. samples of households, expressed as percentage of total income is shown the following table

South	15.0	8.0	3.8	6.4	27.4	19.0	35.3	13.6	
North	18.8	23.1	10.3	8.0	18.0	10.2	15.2	19.0	20.2

Test the equality of variances of household's net expenditure on health care in south and north India.

14M CO5 L2

Н	all Ticket Number :														٦
Co	ode: 19A143T	j	·										R-19		
	II B.Tech.	. II Sen	neste	r Re	gulo	ar Ex	ami	inat	ions	Αu	gust 20	021			
			Str	eng	th o	f M	ater	ials							
			(Civi	l Eng	gine	ering)							
	1ax. Marks: 70												ne: 3 H		
Αı	nswer any five full qu	estions	by ch	oosir	_	าe qเ ****		on tr	om e	each	n unit (5	x14	= 70 M	(larks	1
													Marks	СО	Bloon
				UNI	ті										Leve
	A steel cylinder with	an insid	le diar			00 m	ım ar	nd ar	Out	side	diamete	r of			
	300 mm is subjected														
	maximum tensile stre			•							` '				
	a point midway the cy	ylinder v	vall.										14M	CO1	
				0	R										
	A compound thick cy	linder is	fabric	ated	by s	hrink	ing a	nd fi	tting	a ste	eel jacke	t of			
	300 mm diameter or	n to a s	teel tu	be of	f 100	mm	insid	de di	amet	er a	nd 200	mm			
	outside diameter. The	e radial	interfe	renc	e wa	s 0.1	mm.	Tak	eE=	= 210	$0X10^3 M$	Pa.			
	(a) Determine the cor	•													
	the compound cylind	` '			•										
	will be the maximum					-									
	compound cylinder internal pressure of 2			5 UI	SHIDU	iliOH	ша	uriii	OIIII	Cylli	idei idi	all	14M	CO1	
	internal procedure of 2	.00 1411 0		UNI	T_II									001	
a)	A pump designed for	remote	area			 ower	ed b	v hur	mans	. Th	e maxim	num			
	A pump designed for remote area is to be powered by humans. The maximum power through the drive shaft is 0.1 H.P. when it rotates at 100 rpm. (i) What will														
	be the diameter of the shaft if the maximum permissible shearing stress is														
	100MN/m ² . (ii) At a	later ti	me, el	ectric	pov	ver b	econ	nes	avail	able	so that	an			
	electric motor is plan					-	-		shou	ld be	the po	wer			
	rating of the motor if t	the shaf	t will b	e rota	ating	at 20	00 rp	m.					7M	CO2	
b)	A hollow circular sha									ickne	ess 10 r	nm.			
	Find the maximum str	ress in t	he sha			rque	is 12	,000	Nm.				7M	CO2	
					R										
a)	A closely coiled helica		•												
	coils have a mean								•		•				
	torsional and shearing stresses and strain energy per cubic cm when the spring carries an axial load of 180 N. ($G = 84 \times 10^3 \text{ MPa}$).										71/1	CO2			
ل ا			-			-		ork	store	d na	roc in	tha	/ IVI	CO2	
b)	Find the axial twist, i	-		•	-					•					

UNIT-III

Derive an Euler's load expression for the column with one end fixed and the

1.

2.

3.

4.

5.

E=210MPa.

other end hinged..

7M CO2

14M co3

2

3

Code: 19A143T

OR

6. For a fixed ended hollow cast iron column of length of 4.6 m and outer diameter 250 mm, calculate the thickness of column which is required to carry a load of 1000 kN. Rankine formula is to be used with permissible stress of 80 MPa and constant value is (1/6400).

14M co3

UNIT-IV

7. A beam of rectangular section of 80mm to 120mm carries a uniformly distributed load of 40 kN/m over a span of 2 m and an axial compressive force of 10kN. Calculate(i) maximum fibre stress, (ii) fibre stress at a point 0.50 m from the left end of the beam and 40 mm below the neutral axis.

14M CO4

2

2

OR

8. A short hollow pier 1.6mx 1.6m outsides and 1.0m x 1.0m inner sides supports a vertical load of 2000kN at a point located on a diagonal 0.5m from the vertical axis of the pier. Calculate the normal stresses at the 4 corners of the section of the pier, neglecting its self-weight

14M CO4

UNIT-V

9. What is unsymmetrical bending? Explain how to determine bending stress at any point in a given cross-section, under unsymmetrical bending. List the consequences of unsymmetrical bending.

14M CO5

OR

10. Find the stresses on the cantilever beam (load of 1kN at the free end and the length of beam is 3m) of I section shown in the figure. The load acts at angle of 10° from the vertical axis.

14M CO5