	Ha	all Ticket Number :															-
	Coc	le: 19A242T		<u></u>											R-1	9	
	000	II B.Tech.	ll Se	me	ster	Reg	julai	r Exc	amir	atic	ons A	۹ugi	ust 2	021			
							-		c Fie			_					
			(Ele	ctric	al a	nd E	lect	ronio	cs Er	igine	eerin	g)		т:.			
	-	x. Marks: 70 wer any five full que	estior	ns by	cho	osino	a on	e au	estio	n fro	mea	ιchι	unit (:		me: 3 l = 70 M		
				,	00		*****										
															Marks	СО	Blooms Level
1	2)	Two point charges of	of 1 m						1 of (2 2	1) -	nd (1 1	4)			
1.	a)	respectively. Calcula							•			•			7M	CO1	L3
	b)	Derive the expressio								-					7M	CO1	L3
						O	-										
2.	a)	State and explain po						-				_			7M	CO1	L3
	b)	Derive the expressio	on of (energ	gy in		-	point	t char	ge in	an e	lectri	ic field	?	7M	CO1	L3
3.	a)	Derive the expression	n for	ener	av de		T–II / in e	lectro	nstati	c fiel	de?				7M	CO2	L1
0.	b)	Derive the expressio			•••	-						ic fie	ld?		7M	CO2	L1
)					O										002	
4.	a)	Describe briefly about	ut pol	lariza	ition	in die	lectr	ic ma	terial	s?					7M	CO2	L1
	b)	Derive the expressi		f the	cap	acita	nce	of a	paral	lel p	late	capa	citor \	with			
		composite dielectric?	?			UNI	T III								7M	CO2	L1
5.	a)	State and explain Bi	ot-Sa	vart'	s Lav		1 – 111								7M	CO3	L3
	b)	Using ampere's circu					pres	sion	for m	agne	etic fie	eld in	tensit	y of			
		an infinite sheet of c	urren	t?						-					7M	CO3	L3
e	2)	Dariva and avalain	10000	oll'o '	Third	O		0							1014		10
6.	a) b)	Derive and explain N Define scalar magne				•			nitatio	ne					10M 4M	CO3 CO3	L3 L3
	5)	Denne Scalar magne		JIEIII		UNI			manc	113.					-111	003	LJ
7.	a)	If a point charge of 4	IC m	oves	with			of 5a	a _x +6a	_y -7a _z	m/s	find	the fo	orce			
		exerted, if the flux de	ensity	/ is 5a	a _x +7a	a _y +9a	az wb	/m².							7M	CO4	L1
	b)	Derive an expression					en t	wo s	straig	ht ar	nd p	aralle	el curi	rent	714		1.4
		carrying conductors	111 Sa	me u	necu	011? Ol	2								7M	CO4	L1
8.	a)	Derive the expressio	n for	torqu	ue or			t loop	plac	ed in	a ma	agnet	tic fiel	d?	7M	CO4	L1
	b)	Calculate the inducta								-			•				
		tube of 6cm diamete	r. Th	e len	gth o	f the	tube	is 60)cm a	nd th	ie sol	enoio	d is in	the	714		1.4
		air.				UNI	т_V								7M	CO4	L1
9.	a)	Describe in detail ab	out s	tatica	ally a			ically	/ indu	ced (emf's	?			7M	CO5	L3
	b)	Derive the expressio	n for	mod	ified	Max	vell's	leq	uatior	n for	time	varyii	ng fiel	ds.	7M	CO5	L3
						O	र										
10.	a)	A parallel plate capac			•	•					•	•					
		3mm has a voltage displacement current					is a	pliec	1 (O I	is pl	ales.	Calc	uiate	ιne	7M	CO5	L3
	b)	State and explain Poy		-			at is t	he sig	gnifica	ance	of Po	ynting	g Vect	or?	7M	CO5	L3
						**	**EN	D***	:								

	На	Il Ticket Number :			1
	Cod	e: 19A241T	R-19		
,	LUU	II B.Tech. II Semester Regular Examinations August 202	1		-
		Electrical Machines-II			
		(Electrical and Electronics Engineering)			
	-	T ver any five full questions by choosing one question from each unit (5x1	ime: 3 Ho		
	71134		4 - 70 MC	iiks j	
			Marks	со	Blooms Level
		UNIT–I			
1.	a)	The power supplied to a 3-phase induction motor is 40 kW and the correspondi	•		
		stator losses are 1.5 kW. Calculate (i) the total mechanical power developed a the rotor copper loss when the slip is 0.04 per unit and (ii) efficiency of the mo			
		(neglecting the rotor iron loss).	7M	4	3
	b)	Derive the condition for maximum torque of a 3-phase induction motor unc			
		running condition.	7M	1	1
2.	a)	OR Explain the construction and working of a 3-phase induction motor.	8M	1	1
۷.	а) b)	What are the various losses in an induction motor? On what factors do th		1	1
	~)	depend?	6M	1	1
		UNIT–II			
3.	a)	Explain the cascade arrangement for controlling speed of 3 phase inducti		0	4
	b)	motors.	8M	2	4
	b)	Compare star/delta and autotransformer methods of starting induction motors OR	s. 6M	2	4
4.	a)	How Speed of induction motor is controlled by changing its frequency and no	.of		
		poles? Explain any one method in each case with neat sketches.	8M	3	4
	b)	What are the limitations of various starting methods?	6M	2	4
~	-)	UNIT-III			
5.	a)	Indicate the slip torque characteristics of different types of single-phase inducti motors in one diagram and compare. State the reasons for their deviation.	on 7M	1	1
	b)	Why a single winding single phase induction motor does not have starting torque		6	4
		OR			
6.	a)	Explain the operation of single-phase induction motor using split phase technique	e. 8M	1	1
	b)	Mention the advantages, disadvantages and applications of various single-pha		4	4
		induction motors.	6M	1	1
7.	a)	Explain the effect of armature reaction on the operation of synchronous generato	r. 6M	2	4
	b)	What are the different types of ac generators in use? Explain the essent	tial		
		differences in their construction.	8M	1	1
8.	c)	OR Describe the slip test method for the measurement of Xd and Xq of synchrono			
0.	a)	machines.	8M	1	1
	b)	A 5kVA, 240 V, star connected, 3 phase salient pole alternator with direct a	xis		
		and quadrature axis synchronous reactance of 12 and 7 respectively delive		4	0
		full load current at unity pf. Calculate the excitation voltage and reactance pow	er. 6M	4	3
9.	a)	Explain what is meant by synchronizing of alternators. What are the vario	us		
	,	methods of synchronizing?	8M	4	1
	b)	What is an infinite bus? Mention three conditions to be satisfied prior			
		synchronizing an alternator to an infinite bus.	6M	1	1
10.	a)	OR What is meant by hunting and how to prevent hunting in a synchronous moto	r? 7M	2	4
	b)	Explain how a synchronous motor can be operated as a synchronous condens		3	3
	-	***END***			

	Ha	all Ticket Number :			1
(Coc	le: 19A243T	R-19		
		II B.Tech. II Semester Regular Examinations August 2021			
		Generation and Transmission of Electric Power			
		(Electrical and Electronics Engineering)		0.1.170	
		Tir Wer any five full questions by choosing one question from each unit (5x14	me: 3 H I = 70 M		
	,	********	7011	Sinto y	
			Marks	СО	Blooms Level
		UNIT–I			
1.	,	Discuss in detail about the classification of Nuclear reactors.	7M	1	1
	b)	List out the advantages and disadvantages of thermal power station. OR	7M	1	1
2.	a)	Discuss about the various parts of Hydro power station with neat diagram	7M	1	1
	b)	Write short notes on differences between thermal and nuclear power stations.	7M	1	1
_		UNIT-II			
3.	a)	Derive an expression for the inductance of a double circuit line whose conductors are placed at the vertices of a regular hexagon.	7M	2	2
	b)	A 3-phase 132kV, 100km, 50Hz, single circuit line has horizontal spacing with 3.5m	7101	Z	2
	0)	between adjacent conductors. The conductor diameter is 1.2cm. find the line			
		capacitance per phase and charging current per phase.	7M	2	3
Λ	2)	OR A 3-phase transposed line has conductors of diameter 2cm and spaced at			
4.	a)	distance of 3.65, 5.5 and 8.2 m between the centers. Calculate the inductance			
		per phase per km of line length.	7M	2	3
	b)	Derive an expression for the capacitance between conductors of a single phase			
		line. Deduce the expression for line to neutral capacitance.	7M	2	2
Б	2)	UNIT–III A 150 km long overhead line has a resistance of 48.7 ohms per phase per km,			
5.	a)	inductive reactance of 80.20 ohms per phase per km and capacitance (line to			
		neutral) 8.42 nF per km. It supplies a load of 13.5 MW at a voltage of 88 kV and			
		power factor 0.9 lagging. Using nominal T circuit, find the sending end voltage,	714	0	
	لہ)	current, regulation and power angle.	7M	3	3
	b)	Draw the phasor diagram of a short line and derive an expression for voltage regulation.	7M	3	2
		OR		Ū.	_
6.		Starting from the principles deduce expressions for ABCD constants of a long			
		line in terms of its parameters. Define propagation constant and characteristic	14M	3	2
		impedance.	1411	3	2
7.	a)	Briefly explain skin and proximity effects.	7M	4	1
	b)	A string has 4 suspension discs. The capacitance between each unit and earth			
		is one-fifth of the mutual capacitance: (i) Find the voltages across different discs			
		as percent of total string voltage (ii) Also find string efficiency.	7M	4	3
8.	a)	OR Define and derive the expressions for disruptive critical voltage and visual			
		critical voltage.	7M	4	2
	b)	Derive the expression for sag with unequal supports.	7M	4	2
		UNIT-V			
9.	a)	Define grading and discuss different grading methods.	7M	5	1
	b)	In detail discuss various types of insulation materials. OR	7M	5	1
10.	a)	Draw the cross-section of a 3-core belted cable. Discuss the function of each part.	7M	5	2
	b)	How are cables classified? Give the application of each type of cable.	7M	5	1
		END			

Г

Ha	all Ticket Number :			
Coc	de: 19A244T	R-19		
	II B.Tech. II Semester Regular Examinations August 2021			
	Linear Control Systems			
-	(Electrical and Electronics Engineering) ax. Marks: 70 Time swer any five full questions by choosing one question from each unit (5x14 = Use of rectangular graphs, semi log sheets and polar graphs are permitt ********			
		Marks	со	Blooms Level
	UNIT–I			Level
1. a)	disadvantages of open loop and closed loop systems.	6M	1	1
b)	For the mechanical system shown below, derive the transfer function $f(s) / X_1(s)$			
	$ \begin{array}{c} f(1) \\ f(1) \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	8 M	1	2
2. a)	Deduce the transfer function using Mason's gain formula			
b)	G_{1} G_{1} G_{2} G_{3} G_{4} G_{4} G_{5} G_{5	8M	1	2
	(applied torque)	6M	1	2
3.	UNIT–II Derive the time domain specifications of a second order system with a unit step input OR	14M	2	1
4.	A unity feedback system is characterized by the open loop transfer function $G(s) = 1/s^*(0.5s+1)$ (0.2s+1). Determine the steady state error for unit step, unit ramp and unit acceleration inputs.	14M	2	1

Code: 19A244T

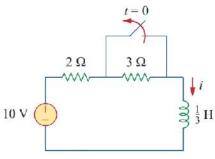
		UNIT–III			
5.	a)	Define stability of a control system and explain about characteristic equation.	4M	2	1
	b)	By Routh stability criterion determine the stability of the system represented by characteristics equation $9S^5-20S^4+10S^3-S^2-9S-10=0$. Comment on the location of characteristic equation.	10M	2	2
		OR			
6.		Sketch the root locus of the system whose open loop transfer function is $G(S) = \frac{K}{S(S+2)(S+4)}$ Find the value of K so that the damping ratio of the closed loop system is 0.5	14M	3	2
7		UNIT-IV			
7.		The open loop transfer function of a unity feedback system is given by			
		$G(S) = \frac{1}{S(S+1)(S+2)}$. Sketch the Polar plot and Determine gain margin and phase			
		margin	14M	3	2
		OR			
8.		The open loop transfer function of a unity feedback system is given by			
		$G(s) = k / [s^{*}(1+0.2s) (1+0.05s)]$. Draw the bode plot. From the graph			
		i) Determine the value of k for the given gain margin of 10 dB and find the corresponding phase margin			
		ii) Determine the value of k for the given phase margin of 40° and find the			
		corresponding gain margin	14M	2	1
		UNIT–V			
9.		Design the basic lead compensator using Bode plot	14M	2	1
		OR			
10.	a)	A continuous time system has a transfer function of			
		$T(s) = (s^2+3s+3) / (s^3+2s^2+3s+1)$. Construct a state model of the system	8 M	4	2
	b)	What do you understand by state transition matrix? State and prove its properties ***END***	6 M	4	1

(Cod	e: 19AC44T	R	-19	
		II B.Tech. II Semester Regular Examinations August 20	21		
		Life Sciences for Engineers			
		(Common to EEE & ECE)			
		x. Marks: 70 wer any five full questions by choosing one question from each unit (5>	Time:	-	
	AUSV		14 – 7		iiks j
			Marks	со	Bloo
		UNIT–I			Lev
1.	a)	Describe the cellular basis of life with suitable examples?	7M	1	
	b)	How organisms are classified based on carbon and energy sources?	7M	1	
	- /	OR			
2.		What are prokaryotes and eukaryotes? Explain in detail about the			
		differences between prokaryotes and eukaryotes?	14M	1	
		UNIT–II			
3.		Explain the structure and functions of proteins with suitable examples?	14M	2	
		OR			
4.	a)	What is fermentation? Describe the industrial applications of fermentation?	7M	2	
	b)	What are antibodies and add a note on its structure?	7M	2	
		UNIT–III			
5.		Explain about the tricarboxylic acid (TCA) cycle?	14M	3	
		OR			
6.	a)	Explain the enzymatic steps involved in glycolysis?	7M	3	
	b)	Write about synaptic and neuromuscular junctions?	7M	3	
		UNIT–IV			
7.		What are the steps involved in DNA replication of eukaryotes?	14M	4	
		OR			
8.		Explain the process of transcription and translation in eukaryotes?	14M	4	
		UNIT–V			
9.	a)	Describe the salient features of restriction endonucleases?	7M	5	
	b)	Explain the production of recombinant vaccines?	7M	5	
		OR			
0.		Explain the various process of recombinant DNA technology?	14M	5	
		END			

	Hall	Ticket Number :			
C	مطم	: 19AC42T	R- 1	9	
	ouc	II B.Tech. II Semester Regular Examinations August 2021			
		Numerical Methods and Transform Techniques			
		(Common to EEE & ECE)			
				Hours	
А	nsw	er any five full questions by choosing one question from each unit (5x14 ********	4 = 70	Marks)
			Marks	со	Blooms
		UNIT-I			Level
1.	a)	Determine a real root of x $e^x = 3$ using Regula – Falsi method.	7M	1	3
••	b)	Determine a root correct to three decimal places for the equation $x^3-x-2=0$			Ū
	0)	using Newton Raphson method.	7M	1	3
		OR			
2.	a)	The population of a certain town is shown in the following table			
		Year X 1931 1941 1951 1961 1971			
		Population Y 40.62 60.80 79.95 103.56 132.65			
		Determine the population in 1981.	7M	1	3
	b)	Using Lagrange's formula, calculate from the following table		•	-
	/	7(3)			
		x 0 1 2 4 5 6			
		f(x) 1 14 15 5 6 19	7M	1	3
		UNIT-II			
3.	a)	Evaluate $\int_{0}^{1} \frac{dx}{dx} = by$ Using Trepezoidal rule and Simpson one third rule.			_
			7M	2	5
	b)	Evaluate $\int_{0}^{0} \sqrt{\frac{1+\frac{3}{2}}{\sqrt{5i}}} \frac{1+\frac{3}{2}}{\partial \partial \partial$	7M	2	5
		OR		2	Ũ
4	a)				
••	~)	Using T: $\frac{dy}{dx} - 2^{\text{aylor's scribs, determ}} y = ze^{x}, y(x) = 0. y(0) = 0$ ine or D a b a b a b b b a b b b b a b b b b b b b b b b			
		$dx - y = z e^{x}, y(x) = 0, y(0) = 0$	7M	2	3
	b)	$\int_{ax}^{a^2} 2y = 3^{e^2}, y(x)$ unge-Kutta method to determine $y(0,1)$, given $y(0,1)$			
		$y' = xy + y^2, y(0) = 1.$	7M	2	3
_	,				
5.	a)	Determine the Taylor's series to represent the function $f(z) = \sin z$ about $z = -\frac{1}{2}$	7M	3	3
	b)	Determine the Laurent series expansion of the function	7 101	3	5
	D)	· · · · · · · · · · · · · · · · · · ·			
		$f(z) = \frac{7z-2}{(z+1)(z)(z-2)}$ in the region 1< z+1 <3	7M	3	3
		OR	7 101	5	0
6.	a)	Determine the residue at each pole of the function $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+1)}$			
		(z+1) $(z+1)$	7M	3	3

Code: 19AC42T

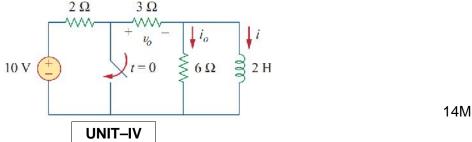
b)	Evaluate $\oint_c \frac{z-3}{z^2+2z+5} dz$, where c is the circle given by (i) $ z =1$ (ii) $ z+1-i =2$			
	using residue theorem.	7M	3	5
a)	Determine Fourier transform $f(x) = x < x < x < x < x < x < x < x < x < x$			
	that the Fourier transform of $e^{-x^2/2}$ is self reciprocal	7M	4	3
b)	Usir _{g F} ourier transform of that ² pro			
	$\int_{0}^{\alpha} \frac{1-c^{OS\pi\lambda}}{\lambda} sinx\lambda d\lambda = \begin{cases} 2, & \text{if } 0 < x < 1\\ 0, & \text{if } x > \pi \end{cases}$	7M	4	3
a)	Determine the Fourier sine and cosine transform of 2 e^{-5x} + 5 e^{-2x}	7M	4	3
b)	Determine the finite Fourier cosine transform of f(x) defined by			
	$f(x) = \pi/3 - x + x^2/2\pi, \ 0 < x < \pi.$	7M	4	3
	UNIT–V			
a)	Using shifting theorem, determine $Z(n+1)^2$ and $Z\left[\frac{1}{(n+2)(n+3)}\right]$	7M	5	3
b)	If $\frac{3z^2 - 4z + 7}{(z-1)^3}$ is the Z – transform of u_n , then determine u_0, u_1, u_2	7M	5	3
	OR			
a)	Determine the inverse Z – transform of $\frac{z}{(z+3)^2(z-2)}$	7M	5	3
b)	Solve the difference equation, using Z – transforms y(n+2)+3y(n+1)+2y(n)=0, given $y(0) = 0$, $y(1) = 1***END***$	7M	5	3
	a) b) a) b) a)	a) Determine Fourier transform of $f(\vec{x})$ defined by $f(x) = e^{-x^2/2} = < x < 0$ or show that the Fourier transform of $e^{-x^2/2}$ is self reciprocal. b) Using Fourier transform of that x^{2} for $x < 1$ proves $\int_{0}^{\infty} \frac{1-e^{0STZ}}{\lambda} sinx\lambda d\lambda = \begin{cases} 2, & if \ 0, & if \ x > \pi \\ 0, & if \ x > \pi \end{cases}$ a) Determine the Fourier sine and cosine transform of $2 e^{-5x} + 5e^{-2x}$ b) Determine the Fourier cosine transform of $f(x)$ defined by $f(x) = \pi/3 \cdot x + x^{2}/2\pi$, $0 < x < \pi$. UNIT-V a) Using shifting theorem, determine $Z(n+1)^{2}$ and $Z\left[\frac{1}{(n+2)(n+3)}\right]$ b) If $\frac{3z^{2}-4z+7}{(z-1)^{3}}$ is the Z - transform of u_{n} , then determine u_{0}, u_{1}, u_{2} OR a) Determine the inverse Z - transform of $\frac{z}{(z+3)^{2}(z-2)}$ b) Solve the difference equation, using Z - transforms $y(n+2)+3y(n+1)+2y(n)=0$, given $y(0) = 0$, $y(1) = 1$	using residue theorem. 7M UNIT-IV a) Determine Fourier transform of $f(x)$ defined by $f(x) = e^{-x^{2}/2}$ is self reciprocal. b) Using Fouri, for transform of $e^{-x^{2}/2}$ is self reciprocal. c) $f_{ug}^{\alpha} = f(x) + e^{-x^{\alpha}/2}$ is self reciprocal. c) $f_{ug}^{\alpha} = f(x) + e^{-x^{\alpha}/2}$ is self reciprocal. c) $f_{ug}^{\alpha} = f(x) + e^{-x^{\alpha}/2}$ is $f(x) + e^{-x^{\alpha}/2}$ is $f(x) + e^{-x^{\alpha}/2}$ if $f(x) + e^{$	using residue theorem. 7M 3 a) Determine Fourier transform of f(x) defined by $f(x) = e^{-x^{\frac{\pi}{2}/3} - x} < x < \text{ or show that the Fourier transform of e^{-x^{\frac{\pi}{2}/2}} is self reciprocal. 7M 4b) Using Fouri, ier transform of thatx, for a prover integral, show \pi is 0 < x < 3\int_{0}^{\infty} \frac{1-e^{0.5\pi Z}}{\lambda} sinx \lambda d\lambda = \begin{cases} 2' & if \\ 0, & if x > \pi \\ 0 & 0 \end{cases} 7M 4a) Determine the Fourier sine and cosine transform of 2 e^{5x} + 5e^{-2x} 7M 4b) Determine the finite Fourier cosine transform of f(x) defined by f(x) = \pi/3 - x + x^{2}/2\pi, 0 < x < \pi. 7M 4b) Determine the finite Fourier sine and cosine transform of f(x) defined by f(x) = \pi/3 - x + x^{2}/2\pi, 0 < x < \pi. 7M 4b) Determine the finite Fourier cosine transform of f(x) defined by f(x) = \pi/3 - x + x^{2}/2\pi, 0 < x < \pi. 7M 5b) If \frac{3z^{2} - 4z + 7}{(z-1)^{3}} is the Z - transform of u_{\pi}, then determine u_{0}, u_{1}, u_{2} 7M 5b) Solve the difference equation, using Z - transforms y(n+2) + 3y(n+1) + 2y(n) = 0, given y(0) = 0, y(1) = 1 7M 5$

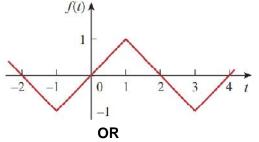

Code: 19A245T II B.Tech. II Semester Regular Examinations August 2021 Network Analysis and Synthesis (Electrical and Electronics Engineering) Max. Marks: 70 Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks) ********* unit	Hall	Ticket Number :	7
If B.Tech. II Semester Regular Examinations August 2021 Network Analysis and Synthesis (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks) ********* UNIT-1 a) Find the transmission parameters of the two-port network shown in figure. b) Determine the Y and T parameters of a two-port network whose z-parameters are $[z] = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix} \Omega$ OR a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two- port equivalent network. b) Determine the h-parameters of the network shown in figure. a) Determine the b-parameters of the network shown in figure. (INIT-II) a) Determine the b-parameters of the network shown in figure. (INIT-II) a) Determine i(t) for t > 0 in the series RC circuit shown in figure	Code	e: 19A245T	
(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks) ********* UNIT-I a) Find the transmission parameters of the two-port network shown in figure. b) Determine the Y and T parameters of a two-port network whose z-parameters are $[z] = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix} \Omega$ OR a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two- port equivalent network. b) Determine the h-parameters of the network shown in figure. a) Determine the h-parameters of the network shown in figure. a) Determine i(t) for t > 0 in the series RC circuit shown in figure $4 \Omega \frac{i(t)}{t}$			
Max. Marks: 70 Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks) Time: 3 Hours Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks) Time: 3 Hours UNIT-I a) Find the transmission parameters of the two-port network shown in figure. b) Determine the Y and T parameters of a two-port network whose z-parameters are $[z] = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix} \Omega$ OR a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two- port equivalent network. b) Determine the h-parameters of the network shown in figure. OR a) Determine ithe h-parameters of the network shown in figure. OR a) Determine ithe h-parameters of the network shown in figure. OR a) Determine ithe h-parameters of the network shown in figure. OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR O O O O O O O O			
Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks) UNIT-I a) Find the transmission parameters of the two-port network shown in figure. i i i i i i i i			
 a) Find the transmission parameters of the two-port network shown in figure. a) Index and the transmission parameters of the two-port network whose z-parameters are [z] =		ver any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
b) Determine the Y and T parameters of a two-port network whose z-parameters are $[z] = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix} \Omega$ a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two-port equivalent network. b) Determine the h-parameters of the network shown in figure. b) Determine the h-parameters of the network shown in figure. c) 2Ω 3Ω 6Ω (UNIT-II) a) Determine i(t) for t > 0 in the series RC circuit shown in figure 4Ω $i(t)$ 4Ω $i(t)$ t			
b) Determine the Y and T parameters of a two-port network whose z-parameters are $[z] = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix} \Omega$ a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two-port equivalent network. b) Determine the h-parameters of the network shown in figure. b) Determine the h-parameters of the network shown in figure. a) Determine i(t) for t > 0 in the series RC circuit shown in figure $4 \Omega \frac{i(t)}{t} + t$	a)		
b) Determine the Y and T parameters of a two-port network whose z-parameters are $[z] = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix} \Omega$ OR a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two- port equivalent network. b) Determine the h-parameters of the network shown in figure. OR a) Determine i(t) for t > 0 in the series RC circuit shown in figure UNIT-I a) Determine i(t) for t > 0 in the series RC circuit shown in figure		$\overbrace{I_1}^{I_1} 10 \Omega$	
b) Determine the Y and T parameters of a two-port network whose z-parameters are $\begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix} \Omega$ OR a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two-port equivalent network. b) Determine the h-parameters of the network shown in figure. $2\Omega \qquad 3\Omega \\ \hline 0 \Omega \\ \hline 0 \Omega$		$\gtrsim 20 \Omega$	
b) Determine the Y and T parameters of a two-port network whose z-parameters are $\begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix} \Omega$ OR a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two-port equivalent network. b) Determine the h-parameters of the network shown in figure. $2\Omega \qquad 3\Omega \\ \hline 0 \Omega \\ \hline 0 \Omega$			_
$[z] = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix} \Omega$ OR a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two- port equivalent network. b) Determine the h-parameters of the network shown in figure. $2\Omega \qquad 3\Omega \qquad \qquad$	b)		1
 a) Explain in detail about <i>h</i> parameters and using its mathematical equations draw the two-port equivalent network. b) Determine the h-parameters of the network shown in figure. 2Ω 3Ω 3Ω 6Ω 6Ω	0)		-
port equivalent network. b) Determine the h-parameters of the network shown in figure. $2\Omega \qquad 3\Omega \\ \hline 0 \qquad \qquad$		-	
b) Determine the h-parameters of the network shown in figure. $2\Omega \qquad 3\Omega \\ 6\Omega \\ 6\Omega \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	a)		-
a) Determine i(t) for t > 0 in the series RC circuit shown in figure $4 \Omega \frac{i(t)}{t} + \frac{1}{2} \frac{1}{$	h)		
a) Determine i(t) for t > 0 in the series RC circuit shown in figure $4 \Omega \frac{i(t)}{t} + \frac{1}{2} \frac{1}{$	0)	Torona Association	
a) Determine i(t) for t > 0 in the series RC circuit shown in figure $4 \Omega \frac{i(t)}{1 - 1} + \frac{1}{1 $		°	
a) Determine i(t) for t > 0 in the series RC circuit shown in figure $4 \Omega \qquad i(t)$ +		$\leq 6 \Omega$	
a) Determine i(t) for t > 0 in the series RC circuit shown in figure $4 \Omega \qquad i(t)$ +		oo	-
a) Determine i(t) for t > 0 in the series RC circuit shown in figure $4 \Omega \qquad i(t) \qquad + \qquad $		UNIT-II	'
	a)		
$u(t) \begin{pmatrix} + \\ - \end{pmatrix} \qquad \qquad$		4Ω $i(t)$	
$u(t)$ $\begin{pmatrix} +\\ -\\ -\\ \end{pmatrix}$ $\frac{1}{16}$ F ${}$ $\frac{v(t)}{}$ -			
$u(t)$ $ \overline{16}$ F $v(t)$ $-$		1Γ	
-		$u(t) - \overline{16} \operatorname{F} \tau^{v(t)}$	
$v(0^{-}) = 9 \text{ V}$		$v(0^{-}) = 9 \text{ V}$	7
b) Employ the initial-value theorem to determine the initial value of each of the following	b)		
time-domain functions: (a) $\frac{u(t-2)+[u(t)]^2}{2}$.(b) $\sin(5t)e^{-2t}u(t)$		time-domain functions: (a) $\frac{u(t-2)+[u(t)]^2}{2}$.(b) $\sin(5t)e^{-2t}u(t)$	-
OR		2	7

4. Find the initial and final values of the functions whose Laplace transforms are

i)
$$G(s) = \frac{20}{(s+3)(s^2+8s+25)}$$
 ii) $G(s) = \frac{3s^3+2s+10}{s(s+3)(s^2+4s+4)}$ 14M

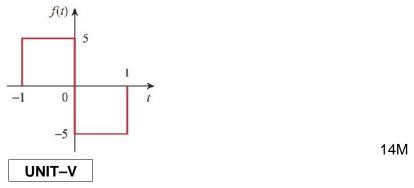
UNIT-III


5. Find i(t) in the circuit shown in Figure. Assume that the switch has been closed for a long time.


14M

OR

6. In the circuit shown in Figure, find i₀,v₀ and i for all time, assuming that the switch was open for a long time



7. Calculate the Fourier series coefficients for the function shown in figure.

8. Obtain the Fourier transform of the function shown in figure.

10.

9. a) Test the following polynomials for the Hurwitz property for
$$s^3 + 4s^2 + 5s + 2$$
. 7M
b) Which of the polynomials remain positive for all $\omega \ge 0$

$$A(\omega^{2}) = \omega^{10} + 6\omega^{8} + 4\omega^{6} + 7\omega^{4} + 10\omega^{2} + 20$$
7M

OR

7M

14M

a) Explain the properties of RL driving point Impedance functionb) Test whether the following functions represent the RC driving point impedance functions

(i)
$$z(s) = \frac{(s+4)(s+2)}{(s+1)}$$
 (ii) $z(s) = \frac{(s+1)(s+6)}{(s+2)(s+3)}$
