	F	fall Ticket Number :	R-19		
	Co	de: 19A443T	K-17		
		II B.Tech. II Semester Regular Examinations August 2021			
		Analog Communication Systems			
	М	(Electronics and Communication Engineering) ax. Marks: 70	e: 3 Ho	SUIRS	
		iswer any five full questions by choosing one question from each unit ($5x14 =$			

			Marks	СО	Blooms Level
		UNIT–I			
1.	a)	Derive an expression for single-tone amplitude modulated wave. Also draw its			
		spectrum.	6M	CO1	L2
	b)	A Radio transmitter using AM has unmodulated carrier output power of 10kw and can be modulated to a maximum depth of 90% by a sinusoidal modulating voltage			
		without causing overloading. Find the value to which unmodulated carrier power			
		may be increased without resulting in overloading if the maximum permitted			
		modulation index is restricted to 40%?	8M	CO1	L2
		OR			
2.	a)	Explain the detection of DSB-SC signal.	7M	CO1	L2
	b)	Explain the detection method for SSB-SC.	7M	CO1	L2
		UNIT–II			
3.	a)	Explain with suitable diagram, how the Wide band FM signal may be generated.	6M	CO2	L3
	b)	An FM wave is given by pram. $h20 \cos\{2^{\frac{T-1}{100}}$ of $F \sin 2_{100}$ and $\theta = 0$ be getermine			
		(i) The carrier and modulating frequency			
		(ii) The modulation index and maximum deviation.	014		
		(iii) Power dissipated by this FM wave.	8M	CO2	L3
4	-)	OR	014		
4.	a) Þ	Explain about Armstrong method of FM in detail.	9M	CO2	L3
	b)	Compare AM with FM signal.	5M	CO2	L3
5.	a)	UNIT-III Write a short notes on threshold effect in FM	7M	CO3	L5
0.	b)	Discuss the role of pre-emphasis and de-emphasis. Derive the transfer functions		005	LU
	0)	of these two circuits.	7M	CO3	L5
		OR			
6.	a)	Explain the FOM of a DSBSC system.	7M	CO3	L5
	b)	Derive the expression for FOM of FM system	7M		L5
		UNIT-IV			
7.	a)	What is image frequency? Explain its effect on voice communication.	10M	CO4	L1
	b)	Explain about tuned radio frequency receiver.	4M	CO4	L1
		OR			
8.	a)	With suitable diagram explain an AM Transmitters.	7M	CO4	L1
	b)	Write about super heterodyne receiver.	7M	CO4	L1
		UNIT–V			
9.	a)	Explain the generation of PPM signal.	7M	CO5	L4
	b)	Briefly explain the generation of double polarity PAM and its generation.	7M	CO5	L4
		OR			
10.	a)	With neat sketched, explain briefly the basic principle of FDM.	7M	CO5	L4
	b)	Find out and represent the spectrum of natural sampling and flat top sampling and		. -	
		compare them.	7M	CO5	L4
		FND			

	На	all Ticket Number :			1
	Со	de: 19A441T	R-19		
		II B.Tech. II Semester Regular Examinations August 2021			
		Analog IC Applications			
		(Electronics and Communication Engineering) ax. Marks: 70 swer any five full questions by choosing one question from each unit (5x14 =	e: 3 H 70 M		
		******		·	Blooms
			Marks	CO	Level
1.	a)	$\label{eq:UNIT-I} \hline \textbf{UNIT-I} \\ For the non-inverting configuration shown below, for different load R_L = 1k , 10k and 100k find the load current I_L. Assume ideal op amp with V_{in} =1mV, R_1=1k and R_2=1K \\ \hline \textbf{N}_1 = 1 \\ \textbf{N}_2 = 1 \\ \textbf{N}_1 = 1 \\ \textbf{N}_2 = 1 \\ \textbf{N}_3 = 1 \\ \textbf{N}_4 = 1 \\ $			
		Nin TL Ra Ra Ra			
		+	7M	CO1	L3
	b)	Discuss in detail about AC characteristics of an op-amp.	7M	CO1	L2
2.	a)	OR Draw the pin diagram of IC 741 op-amp and explain its features	6M	CO1	L2
	b)	Explain the working of Inverting op-amp and derive the equation of its gain	8M	CO1	L2
2	c)	UNIT-II Design a Differentiator that will differentiate an input signal	714		
3.	a) b)	Design a Differentiator that will differentiate an input signal. Draw the Op-amp based Subtractor circuit and show that the output is	7M	CO2	L6
		proportional to the difference of the two input voltages	7M	CO2	L3
	、	OR CR			
4.	a)	Draw and explain the circuit of a voltage to current converter, if the load is (i) floating (ii) Grounded	7M	CO2	L2
	b)	Explain about Non-Inverting Summing amplifier and derive the equation for output voltage?	7M	CO2	L3
		UNIT-III			
5.	a)	How is op-amp used as comparator? explain its working	7M	CO2	L2
	b)	Explain about active filters.	7M	CO3	L6
		OR			
6.	a)	Draw the circuit diagram of triangular wave generator and explain its operation and derive expression for frequency of oscillations	8M	CO2	L3
	b)	Explain the operation of Precision rectifier with neat circuit diagram	6M	CO2	L3 L2
	0)		0101	002	LZ
7.	a)	Draw and explain the operation of Astable multivibrator by using IC 555 timer			
		and derive the expression for frequency of oscillations.	8M	CO4	L3
	b)	Explain the working of Schmitt trigger using IC 555 timer OR	6M	CO4	L2
8.	a)	Derive the expression of time delay of a Monostable multivibrator using 555 timer.	7M	CO4	L3
	b)	Draw the functional diagram of IC 565 PLL and explain its operation	7M	CO4	L2
9.	a)	Explain the working of Inverted R-2R ladder type DAC with neat diagram	7M	CO5	L2
	b)	Explain the working of Weighted resistor type DAC with neat diagram	7M	CO5	L2
10	2)	OR Explain the operation of counter type ADC with post circuit diagram	714	00-	10
10.	a) b)	Explain the operation of counter type ADC with neat circuit diagram Explain the operation of Successive approximation register ADC with neat circuit	7M	CO5	L2
	,	diagram	7M	CO5	L2

Hall Ticket Number :										
Code: 19A442T			_[]	I				R-19		
ll B.Tecl	n. II Semes	ster Regu	lar Exa	mina	tion	s Au	gust :	2021		
		Contro	ol Syste	ems			-			
(Electronics	and Con	nmunic	ation	Engi	neer	ing)			
Max. Marks: 70								Time: 3 Ho	ours	
Answer any five full q	uestions by	-	•	estion f	from	eacł	n unit ((5x14 = 70 Mc	ırks)	
		**	******							
								Marks	СО	Blooms Level
		UNIT	-1							
1. a) Compare the Ope	n loop and C	losed loop	control s	ystems	5.			7M		
b) Obtain C/R1 and	C/R2 for the	e system sh	own belo	W						
R	€→G-	<i>R₂</i> → ⊕ → €		[<i>#</i> ,]+]-+{]₊	<i>G</i> ,	<u>c</u> ą				

2. a) Find the transfer function for the signal flow graph shown below, using Mason's gain formula:

OR

H₁

b) Derive the transfer function of field controlled dc motor.

7M

7M

7M

UNIT–II

X₁G

3. a) Sketch the root locus w.r.t of the characteristic equation for the closed loop system

$$1 + G(s)H(s) = 1 + \frac{k}{s(s+2)(S^2 + 2s + 2)}$$
7M

b) Establish the stability of the system having characteristic equation, $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$, using Routh stability criterion. 7M

- 4. a) Derive the static error constants and list the disadvantages? 7M
 - b) Find step, ramp and parabolic error coefficients and their corresponding steadystate error for unity feed-back system having the T.F $G(s) = \frac{14(s+3)}{s(s+5)(s^2+3s+2)}$ 7M

Code: 19A442T

		UNIT–III	
5.	a)	Explain the procedure of Nyquist criterion.	7M
	b)	Given $G(s) = \frac{k}{s(s+2)(s+10)}$, Sketch Nyquist plot & find range of K for stability.	7M
		OR	
6.	a)	Sketch the Bode plot for the system with the transfer function	
		$G(s)H(s) = \frac{10}{s(1+0.5s)(1+0.1s)}$	9M
	b)	Determine gain cross over frequency and gain margin from the above plots.	5M
		UNIT–IV	
7.	a)	What is compensation? What are the different types of compensators?	4M
	b)	What is a lead compensator, obtain the transfer function of lead compensator and draw pole-zero plot?	5M
	c)	Explain the different steps to be followed for the design of compensator using Bode plot?	5M
		OR	
8.		The open loop transfer function of certain unity feedback control system is given	
		by $G(s) = \frac{k}{s(s+4)(s+80)}$ It is desired to have the phase margin to be at least	
		$33^{\rm 0}$ and velocity error constant KV = 30 Sec–1 . Design a phase lag series Compensator?	14M
		UNIT–V	
9.	a)	What are the properties of state transition matrix?	6M
	b)	Consider the vector matrix differential equation describe the dynamics of the	
		system as $X = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$ Determine state transition matrix?	8M
		OR	
10.	a)	Discuss the significance of state Space Analysis?	7M
	b)	Define the terms Controllability and observability and write necessary conditions for verification of controllability and observability? ***END***	7M

		Ticket Number :	R-19		
C	Cod	e: 19A444T]	
		II B.Tech. II Semester Regular Examinations August 2021			
		Field Theory and Transmission Lines			
	м	(Electronics and Communication Engineering) ax. Marks: 70 Tin	ne: 3 Ho	ours	
	An	swer any five full questions by choosing one question from each unit (5x14			
		*****			BI
			Marks	CO	L
		UNIT-I			
	a)	Determine the cylindrical and spherical coordinates of the following vectors:			
		i. $D = (x+z) a_y$ ii. $E = (y^2 - x^2) a_x + xyz a_y + (x^2 - z^2) a_z$	4M	CO1	
	b)	Determine the energy present in assembling 'n' number of charges? Find the energy in the system obtained by assembling the point charges -1 nC, 4 nC and			
		nC at the location $(0,0,0)$, $(0,0,1)$ and $(1,0,0)$ respectively.	3 10M	CO1	
		OR		001	
	a)	Define electric dipole, electric flux line, and equipotential surface and electric potentia	l. 6M	CO1	
	b)	State and determine the relationship between the electric field intensity an	d		
		electric potential?	8M	CO1	L
		UNIT–II			
	a)	Explain the polarization in dielectrics?	6M	CO2	
	b)	Derive the continuity equation? Compare the relaxation time for copper ($= 5.8$			
		10^7 S/m, ϵ_r =1) and fused quartz (= 10^{-17} S/m, ϵ_r =5.0) OR	8M	CO2	
	a)	Explain and derive the concepts of Convection ,and conduction current density	10M	CO2	
	a) b)	Define Linear, Isotropic and Homogeneous Dielectrics?	4M	CO2	
	0)		4101	002	
	a)	Explain the four Maxwell's equations for time varying fields in differential form for	а		
	,	good conducting medium.	6M	CO3	
	b)	A Conductor with cross-sectional area of 10cm ² carries a conduction current	nt		
		0.2sin10 ⁹ t mA. Given that $= 2.5 \times 10^6$ S/m and $\epsilon_r = 6$, calculate the magnitude of			
		the displacement current density.	8M	CO3	
		OR State Ampere's circuit low and explain any and of its applications	6M	000	
	a) b)	State Ampere's circuit law and explain any one of its applications	6M	CO3	
	b)	Explain the Faraday's Law and show that the time-varying electric field is no conservative.	M8	CO3	
		UNIT-IV	om	005	
	a)	Explain the wave propagation in lossy dielectrics?	9M	CO4	
	b)	State and prove Poynting theorem	5M	CO4	L
		OR			
	a)	Describe the concept of Reflection of an EM wave encounters a perfect conductor	or		
		at normal incidence?	6M	CO4	
	b)	Given a uniform plane wave in air as			
		$E_i = 40 \cos(t - z)a_x + 30 \sin(t - z)a_y V/m$			
		(i) Find \mathbf{H}_{i} .	r		
		(ii) If the wave encounters a perfectly conducting plate normal to the z-axis at $z=0$ find the reflected wave \mathbf{E}_r and \mathbf{H}_r .	, 8М	CO4	
			om	004	
	a)	Explain the various applications of smith chart in Transmission line?	6M	CO5	
	b)	A lossless 60 line is terminated by a load of 60 + j60 . Use the Smith chart t			
	,	calculate Z_{max} and $Z_{in,min}$. How far (in terms of) is the first maximum voltage from			
		the load?	8M	CO5	
		OR			
	a) b)	Derive the transmission line equations? Explain the condition for lossless and distortion less lines?	8M 6M	CO5 CO5	

(Cod	e: 19AC44T	R	-19	
		II B.Tech. II Semester Regular Examinations August 20	21		
		Life Sciences for Engineers			
		(Common to EEE & ECE)			
		x. Marks: 70 wer any five full questions by choosing one question from each unit (5>	Time:	-	
	AUSV		14 – 7		iiks j
			Marks	со	Bloo
		UNIT–I			Lev
1.	a)	Describe the cellular basis of life with suitable examples?	7M	1	
	b)	How organisms are classified based on carbon and energy sources?	7M	1	
	- /	OR			
2.		What are prokaryotes and eukaryotes? Explain in detail about the			
		differences between prokaryotes and eukaryotes?	14M	1	
		UNIT–II			
3.		Explain the structure and functions of proteins with suitable examples?	14M	2	
		OR			
4.	a)	What is fermentation? Describe the industrial applications of fermentation?	7M	2	
	b)	What are antibodies and add a note on its structure?	7M	2	
		UNIT–III			
5.		Explain about the tricarboxylic acid (TCA) cycle?	14M	3	
		OR			
6.	a)	Explain the enzymatic steps involved in glycolysis?	7M	3	
	b)	Write about synaptic and neuromuscular junctions?	7M	3	
		UNIT–IV			
7.		What are the steps involved in DNA replication of eukaryotes?	14M	4	
		OR			
8.		Explain the process of transcription and translation in eukaryotes?	14M	4	
		UNIT–V			
9.	a)	Describe the salient features of restriction endonucleases?	7M	5	
	b)	Explain the production of recombinant vaccines?	7M	5	
		OR			
0.		Explain the various process of recombinant DNA technology?	14M	5	
		END			

	Hall	Ticket Number :			
C	مطم	: 19AC42T	R- 1	9	
	ouc	II B.Tech. II Semester Regular Examinations August 2021			
		Numerical Methods and Transform Techniques			
		(Common to EEE & ECE)			
				Hours	
А	nsw	er any five full questions by choosing one question from each unit (5x14 ********	4 = 70	Marks)
			Marks	со	Blooms
		UNIT-I			Level
1.	a)	Determine a real root of x $e^x = 3$ using Regula – Falsi method.	7M	1	3
••	b)	Determine a root correct to three decimal places for the equation $x^3-x-2=0$			Ū
	0)	using Newton Raphson method.	7M	1	3
		OR			
2.	a)	The population of a certain town is shown in the following table			
		Year X 1931 1941 1951 1961 1971			
		Population Y 40.62 60.80 79.95 103.56 132.65			
		Determine the population in 1981.	7M	1	3
	b)	Using Lagrange's formula, calculate from the following table		•	-
	/	7(3)			
		x 0 1 2 4 5 6			
		f(x) 1 14 15 5 6 19	7M	1	3
		UNIT-II			
3.	a)	Evaluate $\int_{0}^{1} \frac{dx}{dx} = by$ Using Trepezoidal rule and Simpson one third rule.			_
			7M	2	5
	b)	Evaluate $\int_{0}^{0} \sqrt{\frac{1+\frac{3}{2}}{\sqrt{5i}}} \frac{1+\frac{3}{2}}{\partial \partial \partial$	7M	2	5
		OR		2	Ũ
4	a)				
••	~)	Using T: $\frac{dy}{dx} - 2^{\text{aylor's scribs, determ}} y = ze^{x}, y(x) = 0. y(0) = 0$ ine or D a b a b a b b a b b a b b a b b a b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b b b a b b b b b b b b b b			
		$dx - y = z e^{x}, y(x) = 0, y(0) = 0$	7M	2	3
	b)	$\int_{ax}^{a^2} 2y = 3^{e^2}, y(x)$ unge-Kutta method to determine $y(0,1)$, given $y(0,1)$			
		$y' = xy + y^2, y(0) = 1.$	7M	2	3
_	,				
5.	a)	Determine the Taylor's series to represent the function $f(z) = \sin z$ about $z = -\frac{1}{2}$	7M	3	3
	b)	Determine the Laurent series expansion of the function	7 101	3	5
	D)	· · · · · · · · · · · · · · · · · · ·			
		$f(z) = \frac{7z-2}{(z+1)(z)(z-2)}$ in the region 1< z+1 <3	7M	3	3
		OR	7 101	5	0
6.	a)	Determine the residue at each pole of the function $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+1)}$			
		(z+1) $(z+1)$	7M	3	3

Code: 19AC42T

b)	Evaluate $\oint_c \frac{z-3}{z^2+2z+5} dz$, where c is the circle given by (i) $ z =1$ (ii) $ z+1-i =2$			
	using residue theorem.	7M	3	5
a)	Determine Fourier transform $f(x) = x < x < x < x < x < x < x < x < x < x$			
	that the Fourier transform of $e^{-x^2/2}$ is self reciprocal	7M	4	3
b)	Usir _{g F} ourier transform of that ² pro			
	$\int_{0}^{\alpha} \frac{1-c^{OS\pi\lambda}}{\lambda} sinx\lambda d\lambda = \begin{cases} 2, & \text{if } 0 < x < 1\\ 0, & \text{if } x > \pi \end{cases}$	7M	4	3
a)	Determine the Fourier sine and cosine transform of 2 e^{-5x} + 5 e^{-2x}	7M	4	3
b)	Determine the finite Fourier cosine transform of f(x) defined by			
	$f(x) = \pi/3 - x + x^2/2\pi, \ 0 < x < \pi.$	7M	4	3
	UNIT–V			
a)	Using shifting theorem, determine $Z(n+1)^2$ and $Z\left[\frac{1}{(n+2)(n+3)}\right]$	7M	5	3
b)	If $\frac{3z^2 - 4z + 7}{(z-1)^3}$ is the Z – transform of u_n , then determine u_0, u_1, u_2	7M	5	3
	OR			
a)	Determine the inverse Z – transform of $\frac{z}{(z+3)^2(z-2)}$	7M	5	3
b)	Solve the difference equation, using Z – transforms y(n+2)+3y(n+1)+2y(n)=0, given $y(0) = 0$, $y(1) = 1***END***$	7M	5	3
	 a) b) a) b) a) b) 	a) Determine Fourier transform of $f(\vec{x})$ defined by $f(x) = e^{-x^2/2} = < x < 0$ or show that the Fourier transform of $e^{-x^2/2}$ is self reciprocal. b) Using Fourier transform of that x^{2} for $x < 1$ proves $\int_{0}^{\infty} \frac{1-e^{0STZ}}{\lambda} sinx\lambda d\lambda = \begin{cases} 2, & if \ 0, & if \ x > \pi \\ 0, & if \ x > \pi \end{cases}$ a) Determine the Fourier sine and cosine transform of $2 e^{-5x} + 5e^{-2x}$ b) Determine the Fourier cosine transform of $f(x)$ defined by $f(x) = \pi/3 \cdot x + x^{2}/2\pi$, $0 < x < \pi$. UNIT-V a) Using shifting theorem, determine $Z(n+1)^{2}$ and $Z\left[\frac{1}{(n+2)(n+3)}\right]$ b) If $\frac{3z^{2}-4z+7}{(z-1)^{3}}$ is the Z - transform of u_{n} , then determine u_{0}, u_{1}, u_{2} OR a) Determine the inverse Z - transform of $\frac{z}{(z+3)^{2}(z-2)}$ b) Solve the difference equation, using Z - transforms $y(n+2)+3y(n+1)+2y(n)=0$, given $y(0) = 0$, $y(1) = 1$	using residue theorem. 7M UNIT-IV a) Determine Fourier transform of $f(x)$ defined by $f(x) = e^{-x^{x}/x}$, $x < 0$ or show that the Fourier transform of $e^{-x^{2}/2}$ is self reciprocal. 7M b) Using Fouri, for transform of $thaf^{x}$, $y = 0 < x < 1$ $\int_{0}^{\infty} \frac{1-c^{osx^{2}}}{\lambda} sinx\lambda d\lambda = \begin{cases} 2, & if f x > \pi \\ 0, & if x > \pi \end{cases}$ 7M a) Determine the Fourier sine and cosine transform of $2 e^{5x} + 5e^{2x}$ 7M b) Determine the finite Fourier cosine transform of $f(x)$ defined by $f(x) = \pi/3 - x + x^{2}/2\pi$, $0 < x < \pi$. 7M a) Using shifting theorem, determine $Z(n+1)^{2}$ and $Z\left[\frac{1}{(n+2)(n+3)}\right]$ 7M b) If $\frac{3z^{2} - 4z + 7}{(z-1)^{3}}$ is the Z - transform of u_{n} , then determine u_{0}, u_{1}, u_{2} 7M c) CR a) Determine the inverse Z - transform of $\frac{z}{(z+3)^{2}(z-2)}$ 7M b) Solve the difference equation, using Z - transforms y(n+2) + 3y(n+1) + 2y(n) = 0, given $y(0) = 0$, $y(1) = 1$ 7M	using residue theorem. 7M 3 a) Determine Fourier transform of f(x) defined by $f(x) = e^{-x^{\frac{\pi}{2}/3} - x} < x < \text{ or show that the Fourier transform of e^{-x^{\frac{\pi}{2}/2}} is self reciprocal. 7M 4b) Using Fouri, ier transform of thatx, for a prover integral, show \pi is 0 < x < 3\int_{0}^{\infty} \frac{1-e^{0.5\pi Z}}{\lambda} sinx \lambda d\lambda = \begin{cases} 2' & if \\ 0, & if x > \pi \\ 0 & 0 \end{cases} 7M 4a) Determine the Fourier sine and cosine transform of 2 e^{5x} + 5e^{-2x} 7M 4b) Determine the finite Fourier cosine transform of f(x) defined by f(x) = \pi/3 - x + x^{2}/2\pi, 0 < x < \pi. 7M 4b) Determine the finite Fourier sine and cosine transform of f(x) defined by f(x) = \pi/3 - x + x^{2}/2\pi, 0 < x < \pi. 7M 4b) Determine the finite Fourier cosine transform of f(x) defined by f(x) = \pi/3 - x + x^{2}/2\pi, 0 < x < \pi. 7M 5b) If \frac{3z^{2} - 4z + 7}{(z-1)^{3}} is the Z - transform of u_{\pi}, then determine u_{0}, u_{1}, u_{2} 7M 5b) Solve the difference equation, using Z - transforms y(n+2) + 3y(n+1) + 2y(n) = 0, given y(0) = 0, y(1) = 1 7M 5$