## Code: 19A443T

## II B.Tech. II Semester Regular Examinations August 2021

## Analog Communication Systems

Max. Marks: 70
( Electronics and Communication Engineering )

Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
$* * * * * * * * *$

Marks CO | Blooms |
| :---: |
| Level |

## UNIT-I

1. a) Derive an expression for single-tone amplitude modulated wave. Also draw its spectrum.

6M CO1
L2
b) A Radio transmitter using AM has unmodulated carrier output power of 10 kw and can be modulated to a maximum depth of $90 \%$ by a sinusoidal modulating voltage without causing overloading. Find the value to which unmodulated carrier power may be increased without resulting in overloading if the maximum permitted modulation index is restricted to $40 \%$ ?

8M CO1
L2

## OR

2. a) Explain the detection of DSB-SC signal.
b) Explain the detection method for SSB-SC.
7M CO1 L2

## UNIT-II

3. a) Explain with suitable diagram, how the Wide band FM signal may be generated.

(i) The carrier and modulating frequency $\left.{ }^{\pi x \times 10-t+7} \quad \pi \times 12!\quad t\right]$. 5
(ii) The modulation index and maximum deviation.
(iii) Power dissipated by this FM wave.

8M CO2
L3

## OR

4. a) Explain about Armstrong method of FM in detail.
b) Compare AM with FM signal.

## UNIT-III

5. a) Write a short notes on threshold effect in FM

7M CO3
L5
b) Discuss the role of pre-emphasis and de-emphasis. Derive the transfer functions of these two circuits.

## OR

6. a) Explain the FOM of a DSBSC system.
7M CO3 L5
b) Derive the expression for FOM of FM system 7M $\quad$ L5

## UNIT-IV

7. a) What is image frequency? Explain its effect on voice communication.
b) Explain about tuned radio frequency receiver.

10M CO4
L1
4M CO4
L1
OR
8. a) With suitable diagram explain an AM Transmitters.
b) Write about super heterodyne receiver.

## UNIT-V

9. a) Explain the generation of PPM signal.
b) Briefly explain the generation of double polarity PAM and its generation.

OR
10. a) With neat sketched, explain briefly the basic principle of FDM.
b) Find out and represent the spectrum of natural sampling and flat top sampling and compare them.

7M CO5
L4

## II B.Tech. Il Semester Regular Examinations August 2021

## Analog IC Applications

( Electronics and Communication Engineering )
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

1. a) For the non-inverting configuration shown below, for different load $R_{L}=1 k$, 10 k and 100 k find the load current $\mathrm{I}_{\mathrm{L}}$. Assume ideal op amp with $\mathrm{V}_{\text {in }}=1 \mathrm{mV}$, $R_{1}=1 \mathrm{k}$ and $\mathrm{R}_{2}=1 \mathrm{~K}$

b) Discuss in detail about AC characteristics of an op-amp.

## OR

2. a) Draw the pin diagram of IC 741 op -amp and explain its features
b) Explain the working of Inverting op-amp and derive the equation of its gain

UNIT-II
3. a) Design a Differentiator that will differentiate an input signal.
b) Draw the Op -amp based Subtractor circuit and show that the output is proportional to the difference of the two input voltages

## OR

4. a) Draw and explain the circuit of a voltage to current converter, if the load is (i) floating (ii) Grounded

7M CO2
L2
b) Explain about Non-Inverting Summing amplifier and derive the equation for output voltage?

7M CO2 L3
5. a) How is op-amp used as comparator? explain its working

7M CO2
b) Explain about active filters.
$7 \mathrm{M} \mathrm{CO3}$

## OR

6. a) Draw the circuit diagram of triangular wave generator and explain its operation and derive expression for frequency of oscillations

8M CO2
b) Explain the operation of Precision rectifier with neat circuit diagram

## UNIT-IV

7. a) Draw and explain the operation of Astable multivibrator by using IC 555 timer and derive the expression for frequency of oscillations.

8M CO4 L3
b) Explain the working of Schmitt trigger using IC 555 timer

6M co4
OR
8. a) Derive the expression of time delay of a Monostable multivibrator using 555 timer.

7M CO4
b) Draw the functional diagram of IC 565 PLL and explain its operation
$7 \mathrm{M} \mathrm{CO4}$

## UNIT-V

9. a) Explain the working of Inverted R-2R ladder type DAC with neat diagram
b) Explain the working of Weighted resistor type DAC with neat diagram
10. a) Explain the operation of counter type ADC with neat circuit diagram
b) Explain the operation of Successive approximation register ADC with neat circuit diagram

## R-19

## Code: 19A442T

II B.Tech. II Semester Regular Examinations August 2021

## Control Systems

( Electronics and Communication Engineering )
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) Compare the Open loop and Closed loop control systems.
b) Obtain $C / R 1$ and $C / R 2$ for the system shown below


## OR

2. a) Find the transfer function for the signal flow graph shown below, using Mason's gain formula:

b) Derive the transfer function of field controlled dc motor.

## UNIT-II

3. a) Sketch the root locus w.r.t of the characteristic equation for the closed loop system
$1+G(s) H(s)=1+\frac{k}{s(s+2)\left(S^{2}+2 s+2\right)}$
b) Establish the stability of the system having characteristic equation, $s^{4}+8 s^{3}+18 s^{2}+16 s+5=0$, using Routh stability criterion.

## OR

4. a) Derive the static error constants and list the disadvantages?
b) Find step, ramp and parabolic error coefficients and their corresponding steadystate error for unity feed-back system having the T.F $G(s)=\frac{14(s+3)}{s(s+5)\left(s^{2}+3 s+2\right)}$
UNIT-III
5. a) Explain the procedure of Nyquist criterion.
b) Given $G(s)=\frac{k}{s(s+2)(s+10)}$, Sketch Nyquist plot \& find range of K for stability.

## OR

6. a) Sketch the Bode plot for the system with the transfer function

$$
G(s) H(s)=\frac{10}{s(1+0.5 s)(1+0.1 s)}
$$

b) Determine gain cross over frequency and gain margin from the above plots.

## UNIT-IV

7. a) What is compensation? What are the different types of compensators?
b) What is a lead compensator, obtain the transfer function of lead compensator and draw pole-zero plot?
c) Explain the different steps to be followed for the design of compensator using Bode plot?

## OR

8. The open loop transfer function of certain unity feedback control system is given by $G(s)=\frac{k}{s(s+4)(s+80)}$ It is desired to have the phase margin to be at least $33^{\circ}$ and velocity error constant KV $=30 \mathrm{Sec}-1$. Design a phase lag series Compensator?
b) Consider the vector matrix differential equation describe the dynamics of the system as $X=\left[\begin{array}{cc}0 & 1 \\ -6 & -5\end{array}\right]$ Determine state transition matrix?

## OR

10. a) Discuss the significance of state Space Analysis?
b) Define the terms Controllability and observability and write necessary conditions for verification of controllability and observability?

Code: 19A444T

## II B.Tech. II Semester Regular Examinations August 2021

Field Theory and Transmission Lines
( Electronics and Communication Engineering )
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

Marks CO | Blooms |
| :---: |
| Level |

## UNIT-I

1. a) Determine the cylindrical and spherical coordinates of the following vectors:

$$
\text { i. } D=(x+z) a_{y} \quad \text { ii. } E=\left(y^{2}-x^{2}\right) a x+x y z a_{y}+\left(x^{2}-z^{2}\right) a_{z}
$$

4M CO1

L3
b) Determine the energy present in assembling ' $n$ ' number of charges? Find the energy in the system obtained by assembling the point charges $-1 \mathrm{nC}, 4 \mathrm{nC}$ and 3 nC at the location $(0,0,0),(0,0,1)$ and $(1,0,0)$ respectively.

10M CO1
L3

## OR

2. a) Define electric dipole, electric flux line, and equipotential surface and electric potential.
b) State and determine the relationship between the electric field intensity and electric potential?
6M CO1 L1
3. a) Explain the polarization in dielectrics?

## UNIT-II

b) Derive the continuity equation? Compare the relaxation time for copper ( $\sigma=5.8 \mathrm{X}$ $10^{7} \mathrm{~S} / \mathrm{m}, \epsilon_{\mathrm{r}}=1$ ) and fused quartz ( $\sigma=10^{-17} \mathrm{~S} / \mathrm{m}, \epsilon_{\mathrm{r}}=5.0$ )

8M CO2
L2
OR
4. a) Explain and derive the concepts of Convection ,and conduction current density

10M CO2
L3
b) Define Linear, Isotropic and Homogeneous Dielectrics?
$4 \mathrm{M} \quad \mathrm{CO} 2$
L1

## UNIT-III

5. a) Explain the four Maxwell's equations for time varying fields in differential form for a good conducting medium.
$6 \mathrm{M} \mathrm{CO3}$
L1
b) A Conductor with cross-sectional area of $10 \mathrm{~cm}^{2}$ carries a conduction current $0.2 \sin 10^{9} \mathrm{t} \mathrm{mA}$. Given that $\sigma=2.5 \times 10^{6} \mathrm{~S} / \mathrm{m}$ and $\epsilon_{\mathrm{r}}=6$, calculate the magnitude of the displacement current density.

## OR

6. a) State Ampere's circuit law and explain any one of its applications
$6 \mathrm{M} \mathrm{CO3}$
b) Explain the Faraday's Law and show that the time-varying electric field is not conservative.

## UNIT-IV

7. a) Explain the wave propagation in lossy dielectrics?
$8 \mathrm{M} \mathrm{CO3}$
L2

9M CO4
L3
b) State and prove Poynting theorem

## OR

8. a) Describe the concept of Reflection of an EM wave encounters a perfect conductor at normal incidence?

6 M CO
L3
b) Given a uniform plane wave in air as
$E_{i}=40 \cos (\omega t-\beta z) a_{x}+30 \sin (\omega t-\beta z) a_{y} V / m$
(i) Find $\mathbf{H}_{\mathbf{i}}$.
(ii) If the wave encounters a perfectly conducting plate normal to the $z$-axis at $z=0$, find the reflected wave $\mathbf{E}_{r}$ and $\mathbf{H}_{r}$.

## UNIT-V

9. a) Explain the various applications of smith chart in Transmission line?
b) A lossless 60 line is terminated by a load of $60+j 60$. Use the Smith chart to calculate $Z_{\text {max }}$ and $Z_{\text {in, min. }}$. How far (in terms of $\lambda$ ) is the first maximum voltage from the load?

## OR

10. a) Derive the transmission line equations?

| 8 M | CO 4 | L 4 |
| :--- | :--- | :--- |
| 6 M | CO 5 | L 2 |


| $8 M$ | $C O 5$ | $L 4$ |
| :--- | :--- | :--- |
| $8 M$ | $\operatorname{co5}$ | $L 3$ |
| $6 M$ | $C O 5$ | $L 2$ |

Hall Ticket Number :
Code: 19AC44T

II B.Tech. II Semester Regular Examinations August 2021

## Life Sciences for Engineers

( Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

Marks CO | Blooms |
| :---: |
| Level |

|  | UNIT-I |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. a) | Describe the cellular basis of life with suitable examples? | 7M | 1 | 2 |
|  | How organisms are classified based on carbon and energy sources? | 7M | 1 | 1 |
| OR |  |  |  |  |
| 2. | What are prokaryotes and eukaryotes? Explain in detail about the differences between prokaryotes and eukaryotes? | 14M | 1 | 3 |
|  | UNIT-II |  |  |  |
| 3. | Explain the structure and functions of proteins with suitable examples? | 14M | 2 | 2 |
| OR |  |  |  |  |
| 4. a) | What is fermentation? Describe the industrial applications of fermentation? | 7M | 2 | 1 |
|  | What are antibodies and add a note on its structure? | 7M | 2 | 1 |
|  | UNIT-III |  |  |  |
| 5. | Explain about the tricarboxylic acid (TCA) cycle? | 14M | 3 | 2 |
| OR |  |  |  |  |
| 6. a) | Explain the enzymatic steps involved in glycolysis? | 7M | 3 | 1 |
|  | Write about synaptic and neuromuscular junctions? | 7M | 3 | 2 |
| 7. | UNIT-IV |  |  |  |
|  | What are the steps involved in DNA replication of eukaryotes? | 14M | 4 | 2 |
|  | OR |  |  |  |
| 8. | Explain the process of transcription and translation in eukaryotes? | 14M | 4 | 3 |
|  | UNIT-V |  |  |  |
| 9. a) <br> b) | Describe the salient features of restriction endonucleases? | 7M | 5 | 1 |
|  | Explain the production of recombinant vaccines? | 7M | 5 | 2 |
|  | OR |  |  |  |
| 10. | Explain the various process of recombinant DNA technology? ***END*** | 14M | 5 | 2 |

## Code: 19AC42T

|| B.Tech. || Semester Regular Examinations August 2021

## Numerical Methods and Transform Techniques

## ( Common to EEE \& ECE )

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14$ = 70 Marks )

## UNIT-I

1. a) Determine a real root of $x \mathrm{e}^{\mathrm{x}}=3$ using Regula - Falsi method.
b) Determine a root correct to three decimal places for the equation $x^{3}-x-2=0$ using Newton Raphson method.

## OR

2. a) The population of a certain town is shown in the following table

| Year X | 1931 | 1941 | 1951 | 1961 | 1971 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Population Y | 40.62 | 60.80 | 79.95 | 103.56 | 132.65 |

Determine the population in 1981.
$7 \mathrm{M} \quad 1$
3
b) Using Lagrange's formula, calculate $\frac{-80}{r(3)}$ from the following table

| $x$ | 0 | 1 | 2 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 1 | 14 | 15 | 5 | 6 | 19 |

## UNIT-II

3. a) Evaluate $\int_{0}^{-10} \frac{d x}{1+2}$ be by hing Trepezoidal rule and Simpson one third rule.



## OR

$\frac{d y}{d x}-2^{\text {aylor's seritss, determ }} \begin{aligned} & y \text { at } x= \\ & y=e^{x}, y(x)=0 . \\ & y(0)=0\end{aligned}$
 Jsing the fourth order R
$y^{\prime}=x y+y^{2}, y(0)=1$.

## UNIT-III

5. a) Determine the Taylor's series to represent the function $f(z)=\sin z$ about $z=-\pi / 2$
b) Determine the Laurent series expansion of the function $f(z)=\frac{7 z-2}{(z+1)(z)(z-2)}$ in the region $1<|z+1|<3$

## OR

6. a) Determine the residue at each pole of the function $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+1\right)}$
b) Evaluate $\oint_{c} \frac{z-3}{z^{2}+2 z+5} d z$, where c is the circle given by (i) $|z|=1$ (ii) $|z+1-\mathrm{i}|=2$ using residue theorem.

7M 3
5

## UNIT-IV

7. a) Determine Fourier transform of $f(x)$ de ${ }^{\text {fined by }} \mathrm{f}(\mathrm{x})=-x^{2 / 2}, \ldots<\mathrm{x}<\infty$ or show that the Fourier transform of $e-x^{2} / 2$ is self reciprocal.
b) Usir ${ }_{\mathrm{ig}}^{\mathrm{F} \text { oury }}{ }_{\mathrm{r} \text { integral, show } \pi}^{\text {ier transform of }}{ }^{2}$, pron

$$
\int_{0}^{\infty} \frac{1-c}{\lambda} \sin x \lambda d \lambda=\left\{\begin{array}{c}
\frac{\pi}{2}, \quad \text { if integral, show } \quad 0<x<\pi  \tag{3}\\
0, \\
\text { if } x>\pi
\end{array}\right.
$$

$$
7 \mathrm{M} \quad 4
$$

OR
8. a) Determine the Fourier sine and cosine transform of $2 e^{-5 x}+5 e^{-2 x}$

7M 4
$7 \mathrm{M} \quad 4$
3

## UNIT-V

9. a) Using shifting theorem, determine $Z(n+1)^{2}$ and $Z\left[\frac{1}{(n+2)(n+3)}\right]$ 7M 5

3
b) If $\frac{3 z^{2}-4 z+7}{(z-1)^{3}}$ is the $Z$ - transform of $u_{n}$, then determine $u_{0}, u_{1}, u_{2}$

7M 5

## OR

10. a) Determine the inverse $Z$ - transform of $\frac{z}{(z+3)^{2}(z-2)}$

$$
7 \mathrm{M} \quad 5
$$

$$
3
$$

b) Solve the difference equation, using $Z$ - transforms

$$
y(n+2)+3 y(n+1)+2 y(n)=0, \text { given } \mathrm{y}(0)=0, \mathrm{y}(1)=1
$$

***END***

