	На	II Ticket Number :													7
I	Cod	de: 19A541T]_									J	R-1	9	
	000	II B.Tech. II	Sem	este	r Re	gulo	ar Ex	ami	nati	ons	Αυζ	gust 20)21		
				Art	ifici	al Ir	ntell	igeı	nce			-			
		-	Com	pute	er Sci	enc	e ar	nd Er	ngine	eerir	ıg)				
		ax. Marks: 70							ç				Time: 3		
	Ans	swer any five full quest	ions d	by ch	oosir		าe qเ *****	Jestic	on tro	om e	acn	Unit (5	x 4 = /0	Marks)	
													Marks	со	Blooms
													Marks	00	Level
1.		List and explain the ap	olicati			-							14M	CO-1	BL-2
1.			Jican	5115 0	י הי. סו	R							14101	00-1	DL-2
2.	a)	Draw a state space rep	resen	tatior	-		s of H	lanoi	prob	lem			7M	CO-1	BL-4
	b)	Discuss the history of	λI.										7M	CO-1	BL-2
					UNIT	'-II									
3.		Describe the following	in deta	ail: -											
		a) Iterative Deepening	ıb) D	epth	first	sear	ch c)	Diff	erent	iate	infor	med an			
		uninformed search				_							14M	CO-2	BL-4
4.	a)	Discuss Simulated Anr	paling	ı in da	O Iatail	R							7M	CO-2	BL-2
ч.	b)	Illustrate cryptarithmeti	-			n ev:	amnle	to r	alate	it to	CSP		7M	CO-2	BL-2
	0)								siate	11 10	. 100		7 101	00-2	DL-3
5.		List various compon	ents		-		nguad	ae u	nder	stanc	ling	proces	S.		
		Describe syntax analys									Ũ	•	14M	CO-2	BL-4
					Ο	R									
6.	a)	Consider the facts:													
		i. The members of t		n St. I	Bridge	e Clu	ib are	Joe	Sall	y, Bil	, and	d Ellen.			
		ii. Joe is married to s	-												
		iii. Bill is Ellen's brothiv. The spouse of even		rriod	nored	n in	tho o	lub ic		in th		ıh			
		v. The last meeting of	•		•				aisc	, in tu		10.			
		Convert to predic							s not	mar	ried".		7M	CO-2	BL-3
	b)	Differentiate between f		-	•								7M	CO-2	BL-2
	- /									3					
7.	a)	Give comparison betwe	en hi	erarcl	nical	planr	ning a	and c	ondit	ional	plan	ning.	7M	CO-3	BL-2
	b)	Discuss categories and	l objec	cts									7M	CO-4	BL-2
					0	R									
8.	a)	Discuss mental Events		-	ts								7M	CO-4	BL-2
	b)	Discuss partial order p	anning										7M	CO-3	BL-2
0					UNIT	–V									
9.		Write short notes on:													
		 a) Fuzzy Logic b) Acting under unc 	ertaint	v											
		c) Baye's Rule and		-									14M	CO-5	BL-2
					0										
10.		Define uncertain know	•	•	•					•		•			
		it is useful for decision the method of performi		•							•	•	n 14M	CO-5	BL-2
			ing one				ND**			5110	2.101	· · ·		00-0	DL-2

Page 1 of 1

		Hall Ticket Number :	R-1	0]
	Co	ode: 19A542T		7	
		II B.Tech. II Semester Regular Examinations August 2021			
		Design and Analysis of Algorithms			
		(Computer Science and Engineering) Nax. Marks: 70 Ti nswer any five full questions by choosing one question from each unit (5x14 ********	me: 3 1 = 70 N		
			Marks	со	Blooms Level
		UNIT–I			Level
1.	a)	Why do we use asymptotic notations in the study of algorithms? Briefly describe			
		the commonly used asymptotic notations.	7M	CO1	L4
	b)	Give a simple way to implement Disjoint-set data structure. OR	7M	CO1	L2
2.	a)	Using substitution method to solve the following recurrence rotation to give an			
		upper bound and lower bound. T(n)=2T(n/2)+ (n)	9M	CO1	L4
	b)	Explain the properties of an algorithm with an example.	5M	CO1	L2
3.	a)	Show that Quick Sort algorithm takes $O(n^2)$ time in the worst case.	9M	CO2	L4
	b)	Show that the total running time of merge-sort is O (n log n). OR	5M	CO2	L4
4.		State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1, P2, P3, P4, P5) = (20, 15, 10, 5, 1) and deadlines (d1, d2, d3, d4, d5) = (2, 2, 1, 3, 3). UNIT-III	14M	CO2	L4
5.		Deduce a recursive definition for finding the minimum cost of Matrix-Chain multiplication problem. Find an optimal parenthesisation of a matrix chain product whose sequence of dimension is: < 5*10, 10*3, 3*12, 12*5, 5*50, 50*6> OR	14M	CO3	L4
6.		Construct an optimal binary search tree for the identifiers a_1 , a_2 , a_3 , a_4 with the probabilities { p_1 , p_2 , p_3 , p_4 }={3/20, 4/20, 1/20, 4/20} and { q_0 , q_1 , q_2 , q_3 , q_4) = {1/20, 2/20, 2/20, 1/20, 2/20}.	14M	CO3	L4
7.		What is backtracking? Find a solution to the 4-Queens problem using backtracking strategy. Draw the solution space using necessary bounding function.	14M	CO4	L2
8.		OR Solve the traveling sales man problem for the following graph by using branch and bound.			
		$A \xrightarrow{2} B \\ 3 \xrightarrow{5} 7 \\ C \xrightarrow{6} D \\ 5 \\ C \xrightarrow{6} D \\ 5 \\ 1 \\ C \xrightarrow{6} 5 \\ 1 \\ C \xrightarrow{6} D \\ 5 \\ C \\ C$	14M	CO4	L3
0		UNIT-V			
9.		Define NP-complete decision problem. Consider the example of Hamiltonian circuit and explain how closely related decision problems are polynomially reducible.	14M	CO5	L1
				000	L I

- OR 10. a) Define NP complete and NP hard problems with example. 8M CO5 L1
 - b) Give an example to explain the non-deterministic algorithm 6M

CO5

L2

		UNIT–III			
5.	a)	Construct the leftmost and rightmost derivation and parse tree for the following grammar			
		$S \rightarrow aB/bA, A \rightarrow aS/bAA/a, B \rightarrow bS/aBB/b$			
		which accepts the string aaabbabbba.	8M	CO3	L4
	b)	Enumerate the properties of CFL. Explain any two of them.	6M	CO3	L4
		OR			
6.		Convert the following grammar in to GNF:			
		S ABA/AB/BA/AA/B			
		A aA/a			
		B bB/B	14M	CO3	L4
		UNIT-IV			
7.		Obtain a PDA to accept the language $\{L = 0^n 1^n / n \ge 1\}$.	14M	CO4	L3
		OR			
8.		Convert the following CFG to PDA:			
		S B aAA			
		A aBB a			
		B bBB A			
		C a	14M	CO4	L3
		UNIT-V			_0
9.		Design a Turing Machine (TM) to accept the language consisting of all			
		palindromes of 0's and 1's.	14M	CO5	L3
		OR			
10.	a)	Explain about post correspondence problem.	7M	CO5	L3
	b)	Explain the Universal Turing machine in detail.	7M	CO5	L3
	,	***END***			

	Ha	all Ticket Number :			7
(Cod	le: 19A544T	R-19	7	
		II B.Tech. II Semester Regular Examinations August 2021			
		Object Oriented Programming using JAVA			
		(Computer Science and Engineering)			
		Tir Wer any five full questions by choosing one question from each unit (5x14	ne: 3 H = 70 M		
	7 (115)		7014		
			Marks	со	Blooms Level
		UNIT–I			
1.	a)	Explain the benefits and applications of OOPs	7M	CO1	L2
	b)	Define Constructor. Explain parameterized constructor.	7M	CO1	L2
0	-)	OR	714		
2.	a)	Describe the features of Java.	7M	CO1	L2
	b)	Define multidimensional array? Write a java program for matrix multiplication.	7M	CO1	L1
3.	a)	UNIT-II Discuss different forms of Inheritance with an example	7M	CO2	L2
0.	b)	Illustrate the use of "this" keyword with an example.	7M	CO2	L3
	0)	OR	7 101	002	LU
4.	a)	Explain access specifiers in java in detail.	7M	CO2	L2
	b)	Differentiate between method overloading and method overriding with an			
		example.	7M	CO2	L2
		UNIT–III			
5.	a)	Explain Thread life cycle.	7M	CO3	L2
	b)	Define an Exception. Explain the exception hierarchy and how to throw, catch and handle an exception with an example.	7M	000	L2
		OR	7 101	CO3	LZ
6.	a)	Explain Thread priorities and synchronization with example.	7M	CO3	L2
	b)	Illustrate user defined exceptions with an example.	7M	CO3	L3
	-	UNIT-IV			
7.	a)	What are Generics? Explain about bounded types in generics with an example			
		program.	7M	CO4	L1
	b)	Explain overriding methods in a Generic class.	7M	CO4	L2
8.	2)	OR Write a generic method to exchange of two different elements in an array.	7M	004	L3
0.	a) b)	Define Lambda expression. Explain about Block Lambda expressions.	7M	CO4 CO4	L3 L1
	0)		7 101	004	L 1
9.	a)	Discuss about Scanner class in java with example program	7M	CO5	L2
	b)	Explain the differences between Vector and Arrays. Explain the methods in			
	,	Vector class.	7M	CO5	L2
		OR			
10.	a)	Explain various interfaces used in Collection framework?	7M	CO5	L2
	b)	What is the difference between the length of an array and size of ArrayList?	714	6 6 -	
		Explain with an example. ***END***	7M	CO5	L2

Т

Т

	Hal	I Ticket Number :			-
	Coo	le: 19A545T	R-1	9	
,		II B.Tech. II Semester Regular Examinations August 2021			
		Operating Systems			
		(Computer Science and Engineering)			
	-	ix. Marks: 70 Ti	me: 3		
	Ans	wer any five full questions by choosing one question from each unit (5x14	1 = 70 N	⁄\arks)
			Marks	со	Bloom
			IVIAI KS	CO	Leve
1.	a)	UNIT–I Explain different operations performed by the operating system.	7M	CO1	L
1.	a) b)	State and explain various types of computer systems.	7M	CO1	L
	0)	OR	7 111	COT	L
2.	a)		7M	004	L
Ζ.	,	Explain different process states with neat sketch	7M	CO1	L
	b)	Explain the Round Robin scheduling algorithm with a suitable example.	7 111	CO1	L
3.		Explain the reader writer's problem and its solution using the concept of			
0.		semaphores.	14M	CO2	L
		OR			
4.	a)	Explain the usage and structure of monitors with an example.	7M	CO2	L
	b)	Differentiate between			
		i) Process and a Thread ii)User Level and Kernel level thread	7M	CO2	L
		UNIT–III			
5.	a)	Explain Banker's deadlock-avoidance algorithm with an illustration	7M	CO3	L
	b)	What is paging? Explain its structure for 32 -byte memory with 4-byte pages.	7M	CO3	L
		OR			
6.	a)	Explain about demand paging.	7M	CO3	L
	b)	Consider the reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0,			
		1 for a memory with three frames. Trace FIFO, optimal, and LRU page	7M	000	
		replacement algorithms.	7 111	CO3	L
7.	a)	List out the various methods for free-space management and explain them.	7M	CO4	L
	b)	Discuss in detail about different file access methods.	7M		L
	~)	OR		001	_
8.	a)	Briefly explain about single-level, two-level and Tree-Structured directories	7M	CO4	L
	b)	Describe file system mounting.	7M		L
	,	UNIT–V		001	
9.	a)	Explain about domains of protection.	7M	CO5	L
	b)	How can you transfer I/O requests to hardware operations?	7M	CO5	L
		OR			
0.	a)	Explain about the layers of I/O system.	7M	CO5	L
	b)	Discuss about the principles of protection.	7M	CO5	L
	-	***END***			

L	<u> </u>	de: 19AC43T	R-19		
		II B.Tech. II Semester Regular Examinations August 2021			
		Probability and Statistics			
		(Computer Science and Engineering)			
		Tim swer any five full questions by choosing one question from each unit (5x14 = ********	e: 3 H = 70 M		
			Marks	со	Bloom Level
		UNIT–I			
	a)	Define median and mode. Discuss their relative merits and demerits.	7M	CO1	Ľ
	b)	Find the mean, median and mode for the following:			
		Mid Value: 15 20 25 30 35 40 45 50 55 Frequency: 2 22 19 14 3 4 6 1 1	7M	CO1	L
		OR			
	a)	Find the coefficient of correlation between industrial production and export using			
		the following data and comment on the result.			
		Production (in crores tons): 55 56 58 59 60 60 62 Exports (in crores tons) : 35 38 38 39 44 43 45			
		Exports (in crores tons) : 35 38 38 39 44 43 45	7M	CO1	L2
	b)	Find the rank correlation for the following data:			
		X: 56 42 72 36 63 47 55 49 38 42 68 60 Y: 147 125 160 118 149 128 150 145 115 140 152 155			
			7M	CO1	L
		UNIT–II			
	a)	A can hit a target 3 times in 5 shots, B 2 times in 5 shots and C 3 times in 4 shots. They fire a volley. What is the probability that (i) two shots hit, (ii) atleast			
		two shots hit?	7M	CO2	L2
	b)	In a bolt factory, machines A, B and C manufactures 25%, 35% and 40% of the			
		total. Of their output 5%, 4% and 2% are defective bolts. A bolt is drawn at			
		random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B or C?	714	CO2	L3
		OR	7 101	002	Lt
	a)	A random variable X has the following probability distribution.			
	- /				
		X:01234567 $p(x)$:0k2k2k3k k^2 $2k^2$ $7k^2+k$ (i) Find the value of k(ii) Evaluate P(X<6)			
			714	<u> </u>	
	Ь)	(iv) Evaluate P(0 <x<5)< td=""><td>7M</td><td>CO2</td><td>L2</td></x<5)<>	7M	CO2	L2
	b)	Calculate the mean and standard deviation of the probability density function $\begin{bmatrix} 1 & u \end{bmatrix}$			
		$f(x) = \begin{cases} \frac{1}{4}e^{-x/4} & \text{for } x > 0\\ 0 & \text{elsewhere} \end{cases}$			
		0 elsewhere	7M	CO2	L2
		UNIT–III			
	a)	In a bombing action there is 50% chance that any bomb will strike the target.			
		Two direct hits are needed to destroy the target completely. How many bombs			
		are required to be dropped to give a 99% chance or better of completely destroying the target?	7M	CO3	L3
				-	
			Page	e 1 of 2	

L3
L3
L3
L4
L4
L4
L4
L4
L4
L4
L4

Code: 19AC43T

~	`		R -	19	
C	.oae		1		
Hall Ticket Number : R-19 R-19 Code: 19A546T II B. Sech. II Semester Regular Examinations August 2021 Software Engineering (Computer Science and Engineering) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) Marks co Biom IUNIT-I 1. a) List and describe the characteristics of a good software b) What are different software myths? Explain OR 7M CO1 L 2. a) Briefly discuss about Prescriptive process models b) What is unlified process? Discuss different phases in the unlified process OR 7M CO1 L 3. What is Requirements Engineering? Explain different tasks involved in Requirement Engineering Process OR 14M CO2 L 4. a) What are the requirements elicitation techniques? Why is requirement elicitation necessary? 7M CO2 L b) Describe the flow of information during software design using a diagram b) 7M CO3 L OR IUNIT-II Software design using a diagram b) 7M CO3 L OR OR OR OR OR					
		•••			
	Max		ime: 3	3 Hour	S
A	۹nsw		4 = 70	Marks)
		******			Blo
			Marks	CO	L
1.	a)		7M	CO1	
	,	-			
)				
2.	a)	Briefly discuss about Prescriptive process models	7M	CO1	
	b)	What is unified process? Discuss different phases in the unified process	7M	CO1	
	-				
		UNIT–II			
3.					
			14M	CO2	
		-			
4.	a)		714	<u> </u>	
	b)				
	D)	Demonstrate Scenario-Based Modeling	7 101	002	
		UNIT-III			
5.	a)	Describe the flow of information during software design using a diagram	7M	CO3	
	b)				
			7M	CO3	
6.	,				
	b)	What is Coupling and how it is differ from Cohesion?	7M	CO3	
7					
		•	14M	CO4	
		OR			
8.		What are the various testing strategies to software testing? Discuss them.	14M	CO4	
		UNIT–V			
9.	a)	Outline project planning in software project management?	7M		
	b)	What is Capability Maturity Model explain different levels?	7M	CO5	
		OR		_	
0.	a)	Illustrate software quality and software reliability	7M	CO5	
•.	b)	How software reverse engineering is helpful in development of software?	7M	CO5	