Code: 19A541T

Artificial Intelligence
(Computer Science and Engineering)

3. Describe the following in detail:
a) Iterative Deepening b) Depth first search c) Differentiate informed and uninformed search

OR

4. a) Discuss Simulated Annealing in detail.
b) Illustrate cryptarithmetic problem with an example to relate it to CSP.
$7 \mathrm{M} \quad \mathrm{CO}-2 \quad \mathrm{BL}-2$

UNIT-II

UNIT-III

5. List various components of natural language understanding process. Describe syntax analysis and semantic analysis in brief.

OR

6. a) Consider the facts:
i. The members of the Elm St. Bridge Club are Joe, Sally, Bill, and Ellen.
ii. Joe is married to Sally.
iii. Bill is Ellen's brother.
iv. The spouse of every married person in the club is also in the club.
v. The last meeting of the club was at Joe's house.

Convert to predicate logic and prove that "Ellen is not married".

7M	$\mathrm{CO}-2$	$\mathrm{BL}-3$
7 M	$\mathrm{CO}-2$	$\mathrm{BL}-2$

> UNIT-IV
7. a) Give comparison between hierarchical planning and conditional planning.
7M CO-3

BL-2
b) Discuss categories and objects
$7 \mathrm{M} \quad \mathrm{CO}-4$
BL-2

OR

8. a) Discuss mental Events and Objects
b) Discuss partial order planning.

UNIT-V

9. Write short notes on:
a) Fuzzy Logic
b) Acting under uncertainty
c) Baye's Rule and it's use

OR

10. Define uncertain knowledge, prior probability and conditional probability. How it is useful for decision making under uncertainty about knowledge? Explain the method of performing exact inference in Bayesian networks briefly.

Code: 19A542T

|| B.Tech. || Semester Regular Examinations August 2021
 Design and Analysis of Algorithms

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Why do we use asymptotic notations in the study of algorithms? Briefly describe the commonly used asymptotic notations.
b) Give a simple way to implement Disjoint-set data structure.
7M CO1

L4

OR
2. a) Using substitution method to solve the following recurrence rotation to give an upper bound and lower bound. $T(n)=2 T(n / 2)+\Theta(n)$
b) Explain the properties of an algorithm with an example.

UNIT-II

3. a) Show that Quick Sort algorithm takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time in the worst case.
b) Show that the total running time of merge-sort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.

OR

4. State the Job - Sequencing with deadlines problem. Find an optimal sequence to the $\mathrm{n}=5$ Jobs where profits (P1, P2, P3, P4, P5) $=(20,15,10,5,1)$ and deadlines (d 1 , $\mathrm{d} 2, \mathrm{~d} 3, \mathrm{~d} 4, \mathrm{~d} 5)=(2,2,1,3,3)$.

UNIT-III
5. Deduce a recursive definition for finding the minimum cost of Matrix-Chain multiplication problem. Find an optimal parenthesisation of a matrix chain product whose sequence of dimension is: $<5^{*} 10,10^{*} 3,3^{*} 12,12^{*} 5,5^{*} 50,50^{*} 6>$

OR

6. Construct an optimal binary search tree for the identifiers $a_{1}, a_{2}, a_{3}, a_{4}$ with the probabilities $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}=\{3 / 20,4 / 20,1 / 20,4 / 20\}$ and $\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right)=\{1 / 20$, 2/20, 2/20, 1/20, 2/20\}.

UNIT-IV

7. What is backtracking? Find a solution to the 4-Queens problem using backtracking strategy. Draw the solution space using necessary bounding function.

OR
8. Solve the traveling sales man problem for the following graph by using branch and bound.

UNIT-V
9. Define NP-complete decision problem. Consider the example of Hamiltonian circuit and explain how closely related decision problems are polynomially reducible.

14 M	CO 5	L 1
8 M	CO 5	L 1
6 M	CO 5	L 2

10. a) Define NP complete and NP hard problems with example.	8 M	$\mathrm{CO5}$	L 1
b) Give an example to explain the non-deterministic algorithm	6 M	CO	L 2

\square

Code: 19A543T

R-19

I| B.Tech. II Semester Regular Examinations August 2021

Formal Languages and Automata Theory

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Let M be the NFA shown in Figure.

Construct Equivalent DFA for the above NFA
14M CO1
OR
2. Construct the Moore machine for given Mealy machine.

3. Construct Regular Expression for the given DFA

OR
4.
a) Show that the language $L=\left\{0^{n} 1^{n} \mid n>1\right\}$ is not regular using pumping lemma
8M CO2
L2,L3
b) Write about the applications of Regular expressions.

UNIT-III

5. a) Construct the leftmost and rightmost derivation and parse tree for the following grammar

$$
S \rightarrow a B / b A, A \rightarrow a S / b A A / a, B \rightarrow b S / a B B / b
$$

which accepts the string aaabbabbba.
8M CO3
b) Enumerate the properties of CFL. Explain any two of them.

6 M CO

OR

6. Convert the following grammar in to GNF:
$S \rightarrow A B A / A B / B A / A A / B$
$A \rightarrow a A / a$
$B \rightarrow b B / B$
14M CO3 L4

UNIT-IV

7. Obtain a PDA to accept the language $\left\{L=0^{n} 1^{n} / n \geq 1\right\}$.

14M CO4

OR

8. Convert the following CFG to PDA:
$S \rightarrow B \mid a A A$
$A \rightarrow a B B \mid a$
$B \rightarrow b B B \mid A$
$\mathrm{C} \rightarrow \mathrm{a} \quad 14 \mathrm{M}$ CO4 L3

UNIT-V

9. Design a Turing Machine (TM) to accept the language consisting of all palindromes of 0 's and 1's.

14M CO5 L3

OR

10. a) Explain about post correspondence problem.

7M CO5
L3
b) Explain the Universal Turing machine in detail.
$7 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 3$

|| B.Tech. I| Semester Regular Examinations August 2021

Object Oriented Programming using JAVA

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

		Marks	co	Blooms Level
	UNIT-I			
1. a)	Explain the benefits and applications of OOPs	7M	CO1	L2
b)	Define Constructor. Explain parameterized constructor.	7M	CO1	L2
	OR			
2. a)	Describe the features of Java.	7M	CO1	L2
b)	Define multidimensional array? Write a java program for matrix multiplication.	7M	CO1	L1
	UNIT-II			
3. a)	Discuss different forms of Inheritance with an example	7M	CO 2	L2
b)	Illustrate the use of "this" keyword with an example.	7M	CO 2	L3
	OR			
4. a)	Explain access specifiers in java in detail.	7M	CO2	L2
b)	Differentiate between method overloading and method overriding with an example.	7M	CO2	L2
	UNIT-III			
5. a)	Explain Thread life cycle.	7M	CO3	L2
b)	Define an Exception. Explain the exception hierarchy and how to throw, catch and handle an exception with an example.	7M	CO3	L2
	OR			
6. a)	Explain Thread priorities and synchronization with example.	7M	CO3	L2
b)	Illustrate user defined exceptions with an example.	7M	CO	L3
	UNIT-IV			
7. a)	What are Generics? Explain about bounded types in generics with an example program.	7M	CO 4	L1
b)	Explain overriding methods in a Generic class.	7M	CO4	L2
	OR			
8. a)	Write a generic method to exchange of two different elements in an array.	7M	CO 4	L3
b)	Define Lambda expression. Explain about Block Lambda expressions.	7M	CO 4	L1
	UNIT-V			
9. a)	Discuss about Scanner class in java with example program	7M	CO5	L2
b)	Explain the differences between Vector and Arrays. Explain the methods in Vector class.	7M	CO5	L2
	OR			
10. a)	Explain various interfaces used in Collection framework?	7M	CO5	L2
b)	What is the difference between the length of an array and size of ArrayList?			
	Explain with an example.	7M	CO 5	L2
	END			

R-19

Code: 19A545T
I| B.Tech. I| Semester Regular Examinations August 2021

Operating Systems

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO
UNIT-I1. a) Explain different operations performed by the operating system. 7M co1L2
b) State and explain various types of computer systems. 7M CO1 L2
OR2. a) Explain different process states with neat sketch7M CO1L2b) Explain the Round Robin scheduling algorithm with a suitable example.7 M co1L2

UNIT-II

3. Explain the reader writer's problem and its solution using the concept of semaphores.

OR

4. a) Explain the usage and structure of monitors with an example.
7M CO2
b) Differentiate between
i) Process and a Thread
ii)User Level and Kernel level thread
7M CO2
L3

UNIT-III

5. a) Explain Banker's deadlock-avoidance algorithm with an illustration
7M CO3
L2
L3
b) What is paging? Explain its structure for 32 -byte memory with 4-byte pages.
7 M CO

OR
6. a) Explain about demand paging.
b) Consider the reference string: $7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0$, 1 for a memory with three frames. Trace FIFO, optimal, and LRU page replacement algorithms.

7M CO3
L5

UNIT-IV

7. a) List out the various methods for free-space management and explain them.

7M CO4
b) Discuss in detail about different file access methods.

7M CO4
OR
8. a) Briefly explain about single-level, two-level and Tree-Structured directories

7M CO4
b) Describe file system mounting.

7M CO4

UNIT-V

9. a) Explain about domains of protection.

7M CO5
b) How can you transfer I/O requests to hardware operations?

7M CO5
OR
10. a) Explain about the layers of I/O system.

7M CO5
b) Discuss about the principles of protection.

R-19

Code: 19AC43T
R-19

II B.Tech. II Semester Regular Examinations August 2021

Probability and Statistics

(Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define median and mode. Discuss their relative merits and demerits.

Marks CO | Blooms |
| :---: |
| Level |

b) Find the mean, median and mode for the following:

Mid Value: 15	20	25	30	35	40	45	50	55
Frequency: 2	22	19	14	3	4	6	1	1

2. a) Find the coefficient of correlation between industrial production and export using the following data and comment on the result.
Production (in crores tons): $\begin{array}{lllllll}55 & 56 & 58 & 59 & 60 & 60 & 62\end{array}$
Exports (in crores tons) : $\begin{array}{llllllll}35 & 38 & 38 & 39 & 44 & 43 & 45\end{array}$
b) Find the rank correlation for the following data:

X: $5642 \begin{array}{lllllllllll} & 42 & 36 & 63 & 47 & 55 & 49 & 38 & 42 & 68 & 60\end{array}$
Y: 147125160118149128150145115140152155

UNIT-II

3. a) A can hit a target 3 times in 5 shots, B 2 times in 5 shots and $C 3$ times in 4 shots. They fire a volley. What is the probability that (i) two shots hit, (ii) atleast two shots hit?
b) In a bolt factory, machines A, B and C manufactures $25 \%, 35 \%$ and 40% of the total. Of their output $5 \%, 4 \%$ and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B or C ?

OR

4. a) A random variable X has the following probability distribution.
$\begin{array}{lllllllll}X: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
$p(x): \begin{array}{lllllll} & 0 & k & 2 k & 2 k & 3 k & k^{2}\end{array} k^{2} \quad 7 k^{2}+k$
(i) Find the value of k
(ii) Evaluate $\mathrm{P}(\mathrm{X}<6)$
(iii) Evaluate $\mathrm{P}(\mathrm{X} \geq 6)$
(iv) Evaluate $P(0<X<5)$

7M CO2
b) Calculate the mean and standard deviation of the probability density function $f(x)= \begin{cases}\frac{1}{4} e^{-x / 4} & \text { for } \quad x>0 \\ 0 & \text { elsewhere }\end{cases}$

UNIT-III

5. a) In a bombing action there is 50% chance that any bomb will strike the target. Two direct hits are needed to destroy the target completely. How many bombs are required to be dropped to give a 99% chance or better of completely destroying the target?
b) If the probability of a bad reaction from a certain injection is 0.001 , determine the chance that out of 2000 individuals more than two will get a bad reaction.

OR

6. a) X is a normal variate with mean 30 and standard deviation 5 . Find the probabilities that i) $26 \leq X \leq 40$
ii) $X \geq 45$
iii) $|X-30|>5$.
b) In a Normal Distribution 7% items are under 35 and 89% are under 63. What are the mean and standard deviation of the distribution?

7 M CO 3

UNIT-IV

7. a) A random sample of size 100 has a standard deviation of 5 . What can you say about the maximum error with 95% confidence?
b) In a random sample of 250 workers exposed to a certain amount of radiation 42 experienced ill-effects, Construct 95% confidence interval for the corresponding true proportion.

OR

8. a) A random sample of 100 recorded deaths in a country showed an average life span of 71.8 years. Assuming a population standard deviation of 8.9 years, does this seem to indicate that the mean life span today is greater than 70 years? Use a 0.05 level of significance.
b) A market researcher engaged by a particular company's products in city A exceeds this proportion in city B by 0.05 . The researcher conducts survey of two cities and finds the following results:

City	Sample size	No. of households using company's products
A	$n_{1}=160$	120
B	$n_{2}=150$	100

Use 0.05 level of significance and test the researcher's claim.

UNIT-V

9. a) The nine items of a sample have the following values: $45,47,50,52,48,47$, 49,53 and 51 . Does the mean of these differ significantly from the assumed mean 47.5 ?

7M CO5 L4
b) In a test given two groups of students, the marks obtained are as follows:

First Group : 18 $20 \quad 36 \quad 50 \quad 49 \quad 36$
Second Group: $29 \begin{array}{llllllll}28 & 26 & 35 & 30 & 44 & 46 & - & -\end{array}$
Estimate the significance of the difference between the mean marks secured by the students of the above two groups.

OR

10. a) Random samples from two normal populations are given below.

Sample1	16	26	27	23	24	22
Sample2	33	42	35	32	28	31

Do the population variances differ significantly?
b) A test of five similar coins is tossed 320 times and hence the result is

No. of heads: $\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
Frequency : $\begin{array}{lllllll}6 & 27 & 72 & 112 & 71 & 32\end{array}$
Test the hypothesis that the data follow a binomial distribution.

Code: 19A546T

R-19

I| B.Tech. || Semester Regular Examinations August 2021

Software Engineering
 (Computer Science and Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)

UNIT-II

3. What is Requirements Engineering? Explain different tasks involved in Requirement Engineering Process

14M CO2

OR

4. a) What are the requirements elicitation techniques? Why is requirement elicitation necessary?
$7 \mathrm{M} \quad \mathrm{CO} 2$
b) Demonstrate Scenario-Based Modeling

7 M CO 2

UNIT-III

5. a) Describe the flow of information during software design using a diagram

7M CO3
L3
b) Explain the different categories of architecture styles along with the examples.

OR

6. a) Illustrate Basic Design Principles and guidelines for Component-level Design
b) What is Coupling and how it is differ from Cohesion?

7M CO3
$7 \mathrm{M} \mathrm{CO3}$

UNIT-IV

7. State and explain Golden Rules of UI? How these rules affect on UI analysis and design

14M CO4
OR
8. What are the various testing strategies to software testing? Discuss them.

14M CO4

	UNIT-V			
9. a)	Outline project planning in software project management?	7M	CO 5	L4
	What is Capability Maturity Model explain different levels?	7M	CO 5	L2
OR				
10. a)	Illustrate software quality and software reliability	7M	CO 5	L4
b)	How software reverse engineering is helpful in development of software?	7M	CO 5	L2

