Hall Ticket Number :	
Code: 20A143T	R-20
II B.Tech. II Semester Regular & Supplementary Examinations Jul	y 2023
Engineering Geology	
(Civil Engineering) Max. Marks: 70	ne: 3 Hours

 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 	
PART-A	
(Compulsory question)	
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$) со вl CO1 L4
a) What is Weathering?b) What are the Physical Properties of Rock forming Minerals?	CO2 L3
c) Define Dip and Strike.	CO3 L4
d) What is an Aquifer?	CO4 L4
e) Mention types of Dams.	CO5 L3
PART-B	
Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$ N	
	Marks CO BL
2. a) Explain importance of Geology in Civil Engineering practices.	6M CO1 L3
b) Describe effects of Weathering	6M CO1 L3
OR	
3. a) Discuss any one case history of failure of Civil construction	
due to Geological drawback.	7M CO1 L3
b) Explain importance of Structural Geology in Civil work.	5M CO1 L3
UNIT–II	
4. a) Explain the properties of Minerals.	6M CO2 L4
b) Explain the different types of Hardness in Minerals.	6M CO2 L3
OR	014
 5. a) Describe classification of Minerals. b) Evaluit different uses of Minerals. 	8M CO2 L4
b) Explain different uses of Minerals. UNIT-III	4M CO2 L4
6. a) Explain classification of Igneous rocks.	5M CO3 L3
b) Discuss different types of Folds.	7M CO3 L3
OR	
7. a) What is Metamorphism? Explain types of Metamorphism.	6М соз із

	b)	What is Rock deformation? Discuss factors responsible for deformation.	6M	CO3	14
		UNIT-IV	OW	000	64
8.	a)	Explain Vertical Distribution of subsurface water with sketch.	8M	CO4	L3
	b)	Give a brief note on Cone of Depression.	4M	CO4	L4
		OR			
9.	a)	Discuss causes and effects of Landslides.	6M	CO4	L4
	b)	Explain Seismic zones of India.	6M	CO4	L4
		UNIT–V			
10.	a)	Explain Reservoir Siltation and remedial measures.	6M	CO5	L4
	b)	Discuss feasibility of Dam site in bedded formation.	6M	CO5	L4
		OR			
11.	a)	What are the remedial measures taken for Tunneling in soft			
		rock formation?	7M	CO5	L4
	b)	Discuss suitability of Dam site in deformed rock basement. *** End ***	5M	CO5	L4

1 Iaii	Ticket Number :			
Code	: 20A142T	R-2	20	
II	B.Tech. II Semester Regular & Supplementary Examination	s July 20	023	
	Materials, Testing and Evaluation			
Λax.	(Civil Engineering) Marks: 70	Time: 3	3 Hour	ſS
• ·	******			-
	 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two marks. 			
	3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
	(Compulsory question)			
	nswer ALL the following short answer questions $(5 \times 2) = 7$	10M)	CO	E
	Differentiate clamp burning and kiln burning.		CO1	
	xplain the importance of slump in concrete.		CO2	
c) C	compare plastering and pointing.		CO3	
d) L	ist the types of shrinkage.		CO4	
e) D	Define high density concrete and high strength concrete.		CO5	
۸nc	<u>PART-B</u>	2 - 60 M	orke)	
Ans	wer <i>five</i> questions by choosing one question from each unit (5 x 1	Z = OU IVI Marks	CO	
	UNIT–I	Marito	00	
a)	Write the classification of stones.	6M	CO1	
b)	Explain characteristics of good tile.	6M	CO1	
	OR			
a)	Explain properties and seasoning of timber.	6M	CO1	
b)	Compare mud brick and cement brick	6M	CO1	
,	UNIT–II			
a)	Illustrate with neat sketch English and Flemish bond.	6M	CO2	
b)	Compare white washing and distempering.	6M	CO2	
	OR			
a)	Draw neat sketch of mat footing. Explain its			
,	advantages and disadvantages.	6M	CO2	
	Explain different types of paints	6M	CO2	
b)				
b)	UNIT–III			
b) a)	UNIT-III Classify the types of admixtures and explain	6M	CO3	
,	Classify the types of admixtures and explain	6M	CO3	

7. a)	Enumerate the importance of mixing and curing of concrete.	6M	CO3	12
b)	Explain any one test to find the properties of fine and coarse aggregate with its significance		CO3	
8. a)	Explain the factors in the choice of mix proportions.	6M	CO4	L2
b)	Compare creep and shrinkage of concrete	6M	CO4	L3
	OR			
9. a)	Enumerate any one test to check the durability of concrete.	6M	CO4	L2
b)	Compare proportioning of concrete mixes by IS 10262:2019 and ACI method. UNIT-V	6M	CO4	L3
10. a)		6M	CO5	L2
b)	Explain the significance of different lightweight materials in concrete.	6M	CO5	L1
	OR			
11. a)	Describe the properties of polymer concrete.	6M	CO5	L1
b)	Enumerate the importance of self consolidating concrete. *** End ***	6M	CO5	L2

	F	all Ticket Number :						
						R-20)	
	Co		robability	and Statis	tics	s July 202	23	
	Mc	ix. Marks: 70	on to CE, ME, ****	CSE, AI&DS	ana Al&ML)	Time: 3	Hours	
	No	te: 1. Question Paper consis2. In Part-A, each questi3. Answer ALL the question	on carries Two	marks.	,			
		1		RT-A				
			(Compulso	ory question)				
1	. An	swer ALL the following sh	ort answer que	estions (5 X 2 = 10M)	(CO E	3L
ä	a) V	/rite the formula for Rank co	rrelation coeffic	cient with repe	eated ranks.	C	CO1 L	_1
I	,	wo cards are drawn from a	•		• •	•		
		re both aces if the first card	., .	<i>,</i>	d		CO2 L	
0		the mean of a Poisson varia		find P(X>1)				_3
(,	efine Type-I and Type-II Err					CO4 L	
(e) E	xplain briefly the Variance R		,		(CO5 L	_2
		n anna a finn anna atian a bhu ai		<u>RT-B</u>		0 CO Ma	-l	
	А	nswer <i>five</i> questions by c	noosing one q	uestion from	n each unit (5 x 1		-	
						Marks	CO	BL
2		whate Mean Median and M						
Ζ.		culate Mean, Median and Mo ass interval 10-20 20-30	30-40 40-50	50-60 60-7	70 70-80 80-90	٦		
	_	Frequency 5 9	13 21	20 15			CO1	L3
			C	D R				
3.		Find Karl Pearson's coeffici	ent of correlation	on from the fo	llowing data			
		Wages 100 1	01 102 102	100 99 9	7 98 96 95			
		Cost of living 98 9	99 99 97	95 92 9	5 94 90 91	12M	CO1	L3
				T–II				
4.	a)	State Baye's Theorem		1-11		2M	CO2	L-1
	b)	In a bolt factory machines	A B C manufa	octure 20% 3	0% and 50% of th		002	
	0)	total of their output and 6%						
		random and found to b						
		manufactured from (i) Mach	nine A (ii) Mach	nine B (iii) Ma	chine C	10M	CO2	L-3
			-)R				
5.	a)	A random variable X is de					000	
	L)	when two dice are thrown.				3M	CO2	L-3
	b)	For the continuous probabil	Ity function rob.	ability $c_2 s_{-x} w$ $(x_2 s_{-x} w)$ $(x_2 s_{-x} w)$	he X U,IINO	OM	CO2	L-2
		(i) k (ii) Mean (iii) Variance	UNI	T III		9101	002	L-2
6.	a)	Out of 800 families with 5			fould you expect t	to.		
0.	aj	have (i) 3 boys (ii) either 2		•	• •			
		probabilities for boys and g	• • • •		,	6M	CO3	L-3

			ue. 20A		
	b)	In a Normal distribution 7% of the items are under 35 and 89% are under 63. Determine the mean and variance of the distribution OR	6M	CO3	L-3
7.	a)	Average number of accidents on one day on a national highway is 1.6. Determine the probability that the number of accidents are (i) at least one (ii) Atmost one	6M	CO3	L-3
	b)	In a sample of 1000 cases the mean of a certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal, find (i) how many score between 12 and 15? (ii) how many score above 18? (iii) how many		000	
		score below 18?	6M	CO3	L-3
		UNIT–IV			
8.	a)	The mean life of a sample of 10 electric bulbs was found to be 1456 hours with standard deviation of 423 hours. The second sample of 17 bulbs chosen from a different batch shoed a mean life of 1280 hours with standard deviation of 398 hours. Is there a significant difference between the means of two batches at 5% level of significance?	8M	CO4	L-4
	b)	A random sample of 400 items is found to have mean 82 and Standard deviation of 18. Determine maximum error of estimation at 95% confidence interval. Also construct 95% confidence interval.	4M	CO4	L-4
		OR			
9.	a)	An oceanographer wants to whether the depth of the ocean in a certain region is 57.4 fathoms, as had previously been recorded. What can he conclude at the 0.05 level of significance, if readings taken at 40 random locations in the given region yielded a mean of 59.1 fathoms with standard	414	604	
	b)	deviation of 5.2 fathoms? In a random sample of 1000 persons from town A, 400 are found to be consumers of wheat. In a sample of 800 from town B, 400 are found to be consumers of wheat. Do these data reveal a significant difference between town A and town B, so far as the proportion of wheat consumers is concerned? Consider level of significance as 1%.	4M 8M	CO4 CO4	L-4
40					
10.		To compare two kinds of bumper guards, 6 of each kind were mounted on a car and then the car was run into a concrete wall. The following are the costs of repairs.			

Guard I	107	148	123	165	102	119
Guard II	134	115	112	151	133	129

Use 0.01 level of significance to test whether the difference between two sample means is significant.

OR

11. Mechanical engineers, testing a new welding technique, classified welds both with respect to appearance and an X-ray inspection. Test for performance with respect to appearance and X ray inspection are independent (consider level of significance as 5%) Quality

Quanty									
X-Ray	Bad	Normal	Good						
Bad	20	7	3						
Normal	13	51	16						
Good	7	12	21						

12M CO5 L-4

	Hall Ticket Number :]													
	Code: 20A144T]										R-2	20		
•	II B.Tech. II Sem	este	r Re	aulo	ar &	Sur	ople	mer	ntar	v Ex	ami	natior	ns July 20	23		
			_	-		-	-	naly		,			,			
								erin								
I	Max. Marks: 70					له عاد عاد عاد	a she she she she	44					Time: 3	3 H	ours	
ז	Note: 1. Question Pape	ar con	nciete	oft	WO 1		**** (P ai		and	Part	B)					
1	2. In Part-A, eac				-				anu		-D)					
	3. Answer ALL	-							rt-B							
						PA	RT-A									
				((Com	pulso	ory q	uesti	on)							
An	swer ALL the following	short	t ans	wer	ques	stions	s (5	X 2	= 10	(N				(CO	BL
Wh	at are the advantages	of fixe	ed be	eam	whe	n coi	mpar	ed to	sim	oly s	uppo	rted be	am?	C	CO1	Ľ
Ho	w can you draw the sh	ear fo	orce a	and b	bend	ling n	nome	ent di	iagra	ms c	fac	ontinuo	us beam?	C	02	Ľ
) Wh	y a slope-deflection m	ethod	is so	o cal	led?	Writ	e the	gen	eraliz	zed fo	orm (of slope)-			
def	lection equation.													C	03	Ľ
	nstruct the influence lir	nes fo	r rea	ction	at l	eft su	Ibbo	rt A, s	shea	r for	e at	section	X of a			
	iple beam.														CO4	Ľ
) Diff	ferentiate between stat	ic ind	etern	nina	cy ai				ndete	rmin	acy.			C	CO5	Ľ
	A					-	RT-E	_	·			4 / 5			-)	
	Answer <i>five</i> question	ons by	y cho	DOSI	ng o	ne q	uest	lon	rom	eaci	n un	t (5 X '				
						1 1 1 1	IT 1						Marl	٢S	CO	B
2	A propped cantilever		Innor	to lor		-	IT–I	in fia	ura h	مامير	Dro	w the el	oor			
2.	force and bending mo					as sn	own	in ng	u e b	elow	. Dia	w the si	lear			
		10 KN			2	ţ		201	(N							
	3 5	- WINN	/								E	3				
	Ageore		m			¢ ,	2 00	2	20			2.6				
	1	4 n	ņ			-	£ 199	Ţ	- 51		-16		12	M	CO1	L
					0	R										
3.	A fixed beam of span			•									0			
	m away from the left									•		•			004	
	right hand end. Draw	the sr	near i	orce	and			mom	ent a	agra	ms o	t the be	am. 12	M	CO1	Ľ
4	A continuous hoom A		fivo	d of	^		IT–II		ortod	ot D	and	Clon	atha			
4.	A continuous beam A of the spans are, AB						•••	•••					•			
	the span AB and a p															
	shear force and bend	ing mo	omer	nt dia	gran	ns.							12	M	CO2	Ľ
						-	R									
5.	Using Clapeyron's the												•			
	moment diagrams of and the end D is free							•	•	•••						
	span AB carries a poi		•	-												
	of 3 kN/m. The span (CD ca	rries	anot	her p	point	load	of 2 I	kN at	the f	ree e	end D.	12	M	CO2	Ľ
						UNI	T–III									
6.	A continuous beam						•									
	figure below. Ends Determine the bendir						•	•	•							
	diagram?	ig mo	MUEII	is dl	uie	sup	50115	anu	ρισι		, ci i ul	ng mon				
						51	.ht			e 10						
	A 2 kh	l/m			1.020			00000		8 ki	4	1220				
	1		111	1B	21 3 m	-	4.2.5		26.	+	1					
	6	m		-f-	<u>3 n</u>	5 m	- 21	1	2.01	-5 n	2.5		40	л.	CO_{2}	1
													12	M	CO3	Ľ

OR

7. A beam ABCD, 16 m long is continuous over three spans and is loaded as shown in figure below. By using moment distribution method. Calculate the moments and reactions at the supports and draw the bending moment diagrams?

UNIT–IV

8. Four wheel loads of 6, 4, 8 and 5 kN cross a girder of 20 m span, from left to right followed by u.d.l. of 4 kN/m and 4 m long with the 6 kN load leading. The spacing between the loads in the same order are 3 m, 2 m and 2 m. The head of the u.d.l is at 2 m from the 5 kN load. Using influence lines, Calculate the shear force and bending moment at a section 8 m from the left support when the 4 kN load is at centre of the span?

12M CO4 L3

OR

- 9. The system of concentrated loads shown in figure below rolls from left to right across a beam simply supported over a span of 40 m, the 4 kN load leading. For a section 15 m from the left hand support, determine:
 - (a) The maximum bending moment.
 - (b) The maximum shearing force?

12M CO4 L3

10. Find the forces in the members of the frame shown in figure below? All members have the same cross-sectional area, and are of the same material.

12M CO5 L3

11. Find the forces in members BE and CF of the truss shown in figure below? The ratio of length to cross-sectional area for all the members is the same. The frame is pinned at A and rests on rollers at D.

12M CO5 L3

Hall Ticket Number :									[
		1	.∟	4]		1	R-20

Code: 20A141T

II B.Tech. II Semester Regular & Supplementary Examinations July 2023

Civil Engineering Drawing

(Civil Engineering)

Max. Marks: 70

Time: 3 Hours

PART-A Answer any one question carry 28 marks

1. Draw plan and Elevation and section for the given line diagram by using suitable assumed dimensions.

OR

2. Draw King Post truss with suitable scale and mention all parts

 $\frac{PART-B}{PART-B}$ Answer *Three* questions from the following (3 x 14 = 42 Marks)

		Marks	CO	BL
3. a)	Explain the importance of building bye laws?	7M	CO1	L2
b)	Classify the buildings as per NBC and briefly explain them.	7M	CO1	L2
4.	What is meant by aspect, prospect, circulation and grouping? Explain its importance?	14M	CO2	L2
5. a)	Explain different principles used while planning a hospital in			
,	rural areas?	7M	CO3	L1
b)	Design the layout of a hotel building constructed in a city?	7M	CO3	L1
6.	Explain planning of bank building in detail with a neat sketch	14M	CO3	L2
7.	Explain the concept of contemporary architecture in buildings in detail *** End ***	14M	CO3	L2
	LIIU			