UNIT-I2.Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC?12M co1OR3. a)List the different types of errors in measurements?6M co1b)What are the different methods of obtaining the controlling torque in an indicating instrument?6M co14. a)Explain any two errors that occur in electrodynamometer type wattmeter and its compensation.6M co2b)Explain the working of induction type dynamo meter watt meter.6M co2coreCore6M co2OR		На	Il Ticket Number :			
II B.Tech. II Semester Regular & Supplementary Examinations May / June 2024 Electrical and Electronics Measurements (Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B (Compulsory question) 1. Answer ALL the following short answer questions (5 X 2 = 10M) CO a) List out different methods for availing Damping torque in a given instrument CO b) Write the Significance of LPF wattmeter. CO c) What are the different methods used for measuring low and high resistances? CO d) State the limitations of Wheatstone bridge. CO e) List out the advantages of digital instruments over analog instruments. CO Di UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 1.2M CO1 OR 3. a) List the different types of errors in measurements? Marks CO What are the different methods of obtaining the controlling b) What are the different methods of obtaining the controlling b) What are the different methods of obtaining the controlling b) What are the different methods of obtaining the controlling b) What are the different methods of obtaining the controlling b) What are the different methods of obtaining the controlling b) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M CO2 OR 5. a) Write short note on single phase induction type energy meter. 6M CO2		Cod	e: 20 A 242T	R-20		
Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) Compulsory question 1. Answer ALL the following short answer questions (5 X 2 = 10M) CO a) List out different methods for availing Damping torque in a given instrument CO1 b) Write the Significance of LPF wattmeter. CO2 c) What are the different methods used for measuring low and high resistances? CO3 d) State the limitations of Wheatstone bridge. CO4 e) List out the advantages of digital instruments over analog instruments. CO5 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I 2. 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 12M CO1 0R 3. a) List the different types of errors in measurements? 6M CO1 0R Image: analytic curve in electrodynamometer type wattmeter and its compensation. 6M CO2 b) What are the different methods of obtaining the contro			Tech. II Semester Regular & Supplementary Examinations May. Electrical and Electronics Measurements	/ June 20)24	
 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer ALL the following short answer questions (5 X 2 = 10M) CO a) List out different methods for availing Damping torque in a given instrument CO1 a) List out different methods of LPF wattmeter. CO2 CO4 CO4	٨	Max	. Marks: 70	Time: 3 H	lours	
(Compulsory question) 1. Answer ALL the following short answer questions (5 × 2 = 10M) CO a) List out different methods for availing Damping torque in a given instrument CO1 b) Write the Significance of LPF wattmeter. CO2 c) What are the different methods used for measuring low and high resistances? CO3 d) State the limitations of Wheatstone bridge. CO4 e) List out the advantages of digital instruments over analog instruments. CO5 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 12M co1 OR 3. a) List the different types of errors in measurements? 6M co1 UNIT-II 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M co2 OR OR Answer five short note on single phase induction type energy meter.	Ν	Note	2. In Part-A, each question carries Two mark.			
1. Answer ALL the following short answer questions (5 X 2 = 10M) CO a) List out different methods for availing Damping torque in a given instrument CO1 b) Write the Significance of LPF wattmeter. CO2 c) What are the different methods used for measuring low and high resistances? CO3 d) State the limitations of Wheatstone bridge. CO4 e) List out the advantages of digital instruments over analog instruments. CO5 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 12M CO1 OR 3. a) List the different types of errors in measurements? 6M CO1 UNIT-II 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M co2 OR 6M co2 OR 3. a) List the different methods of obtaining the controlling torque in an indicating instrument? <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
 a) List out different methods for availing Damping torque in a given instrument C01 b) Write the Significance of LPF wattmeter. C02 c) What are the different methods used for measuring low and high resistances? C03 d) State the limitations of Wheatstone bridge. C04 e) List out the advantages of digital instruments over analog instruments. C05 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks C0 UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 12M C01 OR 3. a) List the different types of errors in measurements? 6M C01 b) What are the different methods of obtaining the controlling torque in an indicating instrument? 6M C01 UNIT-II 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M C02 b) Explain the working of induction type dynamo meter watt meter. 6M C02 OR 5. a) Write short note on single phase induction type energy meter. 6M C02 	Ans	wer)	со	В
 b) Write the Significance of LPF wattmeter. CO2 c) What are the different methods used for measuring low and high resistances? CO3 CO4 c) State the limitations of Wheatstone bridge. CO4 c) List out the advantages of digital instruments over analog instruments. CO5 CO4 c) List out the advantages of digital instruments over analog instruments. CO5 CO4 c) List out the advantages of digital instruments over analog instruments. CO5 CO4 c) List out the advantages of digital instruments over analog instruments. CO5 CO4 c) List out the advantages of digital instruments over analog instruments. CO5 CO4 CO4 CO4 c) List out the advantages of digital instruments over analog instruments. CO5 CO4 CO4 CO4 CO4 CO4 CO5 Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? CO1 OR 3. a) List the different types of errors in measurements? 6M CO1 CO1 UNIT-II 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M CO2 OR 5. a) Write short note on single phase induction type energy meter. GM CO2 			– – – – –	,		
 c) What are the different methods used for measuring low and high resistances? CO3 d) State the limitations of Wheatstone bridge. CO4 e) List out the advantages of digital instruments over analog instruments. CO5 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 12M CO1 OR 3. a) List the different types of errors in measurements? 6M CO1 b) What are the different methods of obtaining the controlling torque in an indicating instrument? 6M CO1 UNIT-II 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M CO2 b) Explain the working of induction type dynamo meter watt meter. 6M CO2 OR 5. a) Write short note on single phase induction type energy meter. 6M CO2 					CO2	2
 d) State the limitations of Wheatstone bridge. C04 List out the advantages of digital instruments over analog instruments. C05 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks C0 UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 12M C01 OR 3. a) List the different types of errors in measurements? 6M C01 What are the different methods of obtaining the controlling torque in an indicating instrument? 6M C01 UNIT-II 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M C02 b) Explain the working of induction type dynamo meter watt meter. 6M C02 OR 5. a) Write short note on single phase induction type energy meter. 6M C02 	,		0	stances?	CO3	2
 e) List out the advantages of digital instruments over analog instruments. CO5 <u>PART-B</u> Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 12M co1 OR 3. a) List the different types of errors in measurements? 6M co1 What are the different methods of obtaining the controlling torque in an indicating instrument? 6M co1 UNIT-II 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M co2 b) Explain the working of induction type dynamo meter watt meter. 6M co2 OR 5. a) Write short note on single phase induction type energy meter. 6M co2 					CO4	1
PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO Marks CO UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? OR 3. a) List the different types of errors in measurements? b) What are the different methods of obtaining the controlling torque in an indicating instrument? 6M Co1 UNIT-II 6M 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M b) Explain the working of induction type dynamo meter watt meter. 6M OR 5. a) Write short note on single phase induction type energy meter. 6M			-	nts.	CO5	
UNIT-I 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 12M co1 3. a) List the different types of errors in measurements? 6M co1 b) What are the different methods of obtaining the controlling torque in an indicating instrument? 6M co1 IVIIT-II 6M co2 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M co2 b) Explain the working of induction type dynamo meter watt meter. 6M co2 b) Write short note on single phase induction type energy meter. 6M co2	,					
UNIT-I2.Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC?12M co1OR3. a)List the different types of errors in measurements?6M co1b)What are the different methods of obtaining the controlling torque in an indicating instrument?6M co14. a)Explain any two errors that occur in electrodynamometer type wattmeter and its compensation.6M co2b)Explain the working of induction type dynamo meter watt meter.6M co2coreCore6M co2OR5. a)Write short note on single phase induction type energy meter.		An	swer <i>five</i> questions by choosing one question from each unit (5 x 12		-	
 2. Explain the construction and operating principle of permanent magnet moving coil instrument. Derive the expression for deflection of PMMC? 12M coil 3. a) List the different types of errors in measurements? 6M coil b) What are the different methods of obtaining the controlling torque in an indicating instrument? 6M coil 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M coil b) Explain the working of induction type dynamo meter watt meter. 6M coil c) Correct Corr				Marks	CO	BL
permanent magnet moving coil instrument. Derive the expression for deflection of PMMC?12M coiOR3. a) List the different types of errors in measurements?6M coib) What are the different methods of obtaining the controlling torque in an indicating instrument?6M coi4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation.6M coib) Explain the working of induction type dynamo meter watt meter.6M coicor0Rcor6M coicor6M coicor	2			_f		
expression for deflection of PMMC?12MC01OROR03. a) List the different types of errors in measurements?6MC01b) What are the different methods of obtaining the controlling torque in an indicating instrument?6MC014. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation.6MC02b) Explain the working of induction type dynamo meter watt meter.6MC02COROR6MC02b) Explain the working of induction type dynamo meter watt meter.6MC02COROR6MC02COR6MC02	Ζ.		· · · · · ·			
OR3. a)List the different types of errors in measurements?6MCO1b)What are the different methods of obtaining the controlling torque in an indicating instrument?6MCO14. a)Explain any two errors that occur in electrodynamometer type wattmeter and its compensation.6MCO2b)Explain the working of induction type dynamo meter watt meter.6MCO2coreCO2CO2CO2coreCO2CO2 <tdc< td=""><td></td><td></td><td></td><td></td><td>CO1</td><td></td></tdc<>					CO1	
 b) What are the different methods of obtaining the controlling torque in an indicating instrument? 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. b) Explain the working of induction type dynamo meter watt meter. b) Explain the working of induction type dynamo meter watt meter. c) CO2 c) CO2 c) Write short note on single phase induction type energy meter. c) Write short note on single phase induction type energy meter. c) CO2 			-		001	-
b) torque in an indicating instrument? 6M co1 UNIT-II 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M co2 b) Explain the working of induction type dynamo meter watt meter. 6M co2 core Core 6M co2 b) Explain the working of induction type dynamo meter watt meter. 6M co2 core Core 6M co2 for all black Core 6M co2 for all black Core 6M co2	3.	a)	List the different types of errors in measurements?	6M	CO1	2
4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. 6M CO2 b) Explain the working of induction type dynamo meter wattmeter. 6M CO2 corr Corr 6M CO2 b) Explain the working of induction type dynamo meter wattmeter. 6M CO2 corr Corr 6M CO2 corr Corr 6M CO2 corr Corr 6M CO2 corr Corr Corr corr Corr 6M CO2 corr Corr Corr corr Corr 6M CO2 corr Corr Corr		b)	What are the different methods of obtaining the controlling	9		
 4. a) Explain any two errors that occur in electrodynamometer type wattmeter and its compensation. b) Explain the working of induction type dynamo meter watt meter. 6M CO2 6M CO2 6M CO2 6M CO2 		0)	torque in an indicating instrument?	6M	CO1	
 type wattmeter and its compensation. b) Explain the working of induction type dynamo meter watt meter. 6M co2 6M co2 6M co2 6M co2 			UNIT–II			
 b) Explain the working of induction type dynamo meter watt meter. 6M CO2 6M CO2 5. a) Write short note on single phase induction type energy meter. 6M CO2 	4.	a)				
b)meter.6M co2OR0R5. a)Write short note on single phase induction type energy meter.6M co2			type wattmeter and its compensation.	6M	CO2	
5. a) Write short note on single phase induction type energy 6M co2		b)			CO2	
a) meter. 6M co2			OR			
a) meter. 6M co2	5.	-	Write short note on single phase induction type energy	IY		
b) Briefly discuss about power factor meter in detail 6M cos		a)		-	CO2	
		b)	Briefly discuss about power factor meter in detail.	6M	CO2	2

Page **1** of **2**

UNIT–III

6.		Single range student type potentiometer has an 18 step dial switch where each step represents 0.1 V. The dial resistors are 10 . The slide wire of the potentiometer is circular and has 11 turns and a resistance of 11 each. The slide wire has 100 divisions and interpolation can be done to one- fourth of a division. The working battery has a voltage of 6.0V and negligible internal resistance. Calculate: i) the measuring range of potentiometer, ii) the resolution,			
		iii) working current, and iv) Setting of rheostat.	12M	CO3	3
		OR			
7.		What is meant by standardization of a potentiometer? With the help of neat diagram, explain the principle of operation of D.C. Crompton's Potentiometer.	12M	CO3	3
8	a)	Explain how to measure Low resistances using Kelvin's			
0.	u)	double bridge. Derive the necessary equations.	6M	CO4	2
	b)	All four resistances in a Wheatstone bridge are 1k , the galvanometer has a 100 resistance and 0.05 μ A/mm sensitivity, and the supply is 20V. Determine the minimum change that can be detected in the measured resistance.	6M	CO4	3
		OR			
9.		Draw the circuit diagram of Wien's bridge and explain the measurement procedure for measuring unknown frequency			
		using this bridge. Derive the formula used.	12M	CO4	3
		UNIT-V			
10.	a)	List the general specifications of Digital Voltmeter.	6M	CO5	2
	b)	Explain the operation of digital multimeter.	6M	CO5	2
		OR			
11.	a)	Explain the working of Dual slope Integrating type Digital Voltmeter with a neat schematic diagram.	6M	CO5	2
	b)	Explain the working of Digital frequency meter with a neat block diagram.	еM	CO5	0
		*** End ***		005	2

Г													
	На	III Ticket Number :											
C	Cod	e: 20A243T								R-2	0		
	II B	.Tech. II Semeste	-						ations Mc	iy / June	2024		
						agne							
٨	Max	. Marks: 70	(EIECIII			eciioi	IICS EI	ngineerir	19)	Time: 3	Hour	S	
				_		*****							
N	Note	: 1. Question Paper 2. In Part-A, each			-			nd Part-H	B)				
		3. Answer ALL th	-					-В					
			1			ART-A							
				(Co		sory qu	-	1)					
1	. A	nswer ALL the fo	llowing	shor	t ansv	wer qu	uestio	ons (5)	X 2 = 10N	(N	со	BL	
	a)	State Coulumb'	s Law a	and	ment	ion its	s limi [.]	tations.		(01	L2	
	b)	Define conduct	ion and	con	vecti	on cu	irrent	t densiti	es.	(02	L1	
	c)	Distinguish betv	ween so	cala	r and	vecto	or ma	agnetic	potentia	I. (03	L2	
	d)	Write Lorentz's	force e	qua	tion f	or a r	novir	ng charg	ge.	C	04	L2	
	e)	What is meant	by disp	lace	ment	curre	ent?	-	-	(05	L1	
					<u>P</u>	ART-B	-						
	An	swer five question	s by cho	osin	g one	quest	ion fro	om each	unit (5 x ′		-	_	
										Mark	s CO	C	BL
-		-		_	I								
2.	a)	Derive the expre			ectric	c Field	d Inte	nsity du	e to Infin				
		surface sheet of	-			P			A (0, 0		1 cc)1	L3
	D)	Given two points					-		-	-			
		B (-3,-3, 5), find	the uis	lanc	enoi	-	ILDU	o point .	Α.	41	1 cc)1	L3
-	,					OR					-		
3.	a)	Explain any two									1 cc)1	L2
	b)	If Coulomb's for		•	-			-		-			
		of 10C, find th	e elect	ric t	ield i	ntens	sity, i	ts mag	nitude a				
		direction.					•			01/	1 cc)1	L2
	、					NIT-I							
4.	a)		Laplad	ce	and	Pois	son's	s equa	ations	for		_	
		electrostatic fie									/ cc)2	L4
	b)	Compute the to	-	-	-		-	-	-	-			
		in an electric fie		•				separate	ed by Tr				
		and located on	the z-a	XIS 6		-	11.			ON	1 cc)2	L3
_						OR							
5.		What is dipole				•		tor por	tential a		1 -	_	
		electric field inte	ensity o	ue 1	oac	apole	•			121	1 cc)2	L2

	UNIT–III			
6. a)	How does the magnetic field vary with distance from a			
	current-carrying filament according to Biot-Savart's law?	6M	CO3	L1
b)	Calculate the magnetic field intensity at a point due to a			
	finite straight current-carrying filament.	6M	CO3	L3
	OR			
7. a)	Discuss the mathematical representation of vector magnetic potential for various current distributions.	6M	CO3	L2
b)	Investigate the magnetic field inside and outside a toroid			
	using Ampere's law.	6M	CO3	L3
	UNIT–IV			
8. a)				
	magnetic dipole moment		CO4	
b)	·	6M	CO4	L4
	OR			
9. a)				
	current-carrying conductors.	6IVI	CO4	L3
b)	5			
	10cm. Calculate the inductance of a solenoid and energy stored when a current of 12 A is flowing through the coil.	6M	CO4	10
		0101	004	LZ
10. a)	Define Poynting theorem and briefly explain about Poynting			
	vector.	6M	CO5	L2
b)	Find the displacement current density within a parallel plate			
	capacitor having a dielectric, $r = 10$, area of plates,			
	S = $0.01m^2$, distance of separation, d = $0.05mm$, applied			
	voltage, V=200 Sin 200t.	6IVI	CO5	L3
	OR			
11. a)	State and explain Faraday's laws of electromagnetic	614	005	
۳.	induction with its integral and point forms.	DIVI	CO5	L2
(U	Write the Maxwell's equations both in point and integral forms for time varying fields.	6M	CO5	10
	*** End ***		005	LZ

*** End ***

Hall Ticket Number :	R-20	
II B.Tech. II Semester Regular & Supplementary Examinations May/Ju Managerial Economics & Financial Analysis	Jne 202	4
(Common to ME & EEE)		
Max. Marks: 70 Tim	ie: 3 Hou	rs
 ******** Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 		
<u>PART-A</u> (Compulsory question)		
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$	со	BL
 a) What are the types of elasticity of demand 	CO1	L1
b) Fixed Cost Rs.500, Variable Cost Re.1 per unit and Selling	3	
Price per unit Rs.2. Calculate Break even in units	CO2	
c) Explain Partnership	CO3	L2
d) Define NPV	CO4	
e) Explain about the Debt Equity Ratio along with assumed figures	S CO5	L2
$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 M	larks)	
	Marks C	O BL
UNIT-I		
2. What is Managerial Economics and explain its scope?	12M	1 L1
OR		
 Explain the classification of demand forecasting methods? UNIT–II 	12M	1 L2
4. Discuss internal and external economies of scale?	12M	2 L2
OR		
 5. XYZ Company. Ltd., given the following data and expecting from you its break-even level and Margin of Safety. a) Total Sales = 200000, b) Variable Cost = 30000, 		
Fixed is Rs.50000	12M	2 L4
6. Define Perfect Competition and explain the price-output determination?	12M	3 L2
7. a) What is Sole Trading? Discuss its chief characteristics?	6M	3 L1
b) Define the term Partnership and explain its characteristics?		3 L1 3 L2

UNIT-IV

- 8. a) What is Capital and discuss the types of Capital? 6M 4 L2
 - b) Explain the Payback period and its merits and demerits? 6M 4 L2

OR

9. From the following, evaluate the Net Present Value at 10% D.F. whose value is Rs.200000 and also give your opinion whether the project has to accept or not? (PV factor @10% I Year - 0.909, II Year - 0.857,

III Year – 0.757, IV Year – 0.653, V year – 0.593)

12M 4 L4

· · · · · · · · · · · · · · · · · · ·				/		
Year	2015	2016	2017	2018	2019	
Cash Flows	40000	50000	60000	80000	100000	

UNIT-V

10. Write journal entries in the books of Sri Charan for the month of January, 2024. January 1st Sri Charan commenced business with a capital of Rs.100000 On 2nd Deposited in the bank Rs.10000 On 3rd Stationary purchased for Rs.2000 On 15th Paid electricity bill Rs.5000 On 18th Rent paid Rs.5000 On 31st Paid Salaries of Rs.20000 12M 5 L4 OR What is Ratio and explain the classification of Ratio 11. Analysis in brief?

12M 5 L2

*** End ***

	Hall Ticket Number :														
													R-20		
	Code: 20AC42T II B.Tech. II Semeste	er Regu	ılar 8	. Sup	ople	mei	ntar	y Ex	ami	nati	ons N	Λαγ/	June 20)24	
	Numerical Methods and Random Variables														
	(Common to EEE and ECE) Max. Marks: 70 Time: 3 Hours														
	Notes 1 Operation Dans		ta of t			**** (D ar		I I	Dant	D)					
	Note: 1. Question Pape 2. In Part-A, eac 3. Answer ALL	h questi	on car	ries 7	Гwo	mar	ks.		rari-	Б)					
	<u>PART-A</u> (Compulsory question)														
1. A i	nswer ALL the follo	wing s	hort	ans	wer	que	estic	ons	(5)	< 2 =	= 10N	I)		СО	BL
a) V	/rite Regula falsi me	ethod fo	ormu	la.										CO1	L5
b) E	valuate ∫ e ^x dx, by	/ Simps	son's	½ r	ule,	tak	ing	n=6							
	0													CO2	L5
	/rite the Properties											-		CO3	L6
,	/hat is the probability								-				-	CO4	L1
e) A	fair coin is tossed s	six time	S. ⊢II	nd tr	•	roda RT-B		y oi	get	ting	tour	nead	ds.	CO5	L1
	Answer <i>five</i> questio	ns by cl	noosi	ng or				rom	each	unit	:(5 x	12 =	60 Marks	5)	
													Marks	CO	BL
2	a) Determine the ro	not of x	× ص×	2 hv		IT-I		fals	enc	nsitio	n		6M	001	10
-	 Applying Newto 			-					-			the		COT	L3
	following table.	no ba			norp			· · · · ·	(.	.00)	nom				
		x 1	.1	1.2	2	1.3	3	1.	4						
	f(x) 7.8	331	8.72		9.62)R	27	10.7	'44				6M	CO1	L3
3. a	a) Find a real root	of equa	tion	x ³ -	x-1	1=	0by	bis	ectio	on m	netho	d.	6M	CO1	L1
l	b) Compute the v		ofy,	wh	en	x=3	3 by	/ U	sing	La	gran	ge's			
	interpolation form		· ·	>	1	1	2								
		X V	-2		·1 2	1 0	2						6M	CO1	L3
					UNI	T–II									
4. a	/			leriv	ative	es c	of th	e fu	Incti	on t	abula	ated			
	below at the point				1 6		1 0	,	2	0	2	2			
	x 1.0 1. y 2.7183 3.32		1.4 0552		1.6 953	0 6	1.8 049		2. 7.38		2.2 9.02		6M	CO2	L1
I	b) Evaluate $\int e^{-x^2} c$	lx using	l Sim	psoi	n's r	ule	taki	ng h	n = 0	.25.			~		
	Õ												бM	CO2	L5

Code: 20AC42T

OR

5. Obtain y(0.02), y(0.04) for $y' = y + x^2$, y(0) = 1Using modified Euler's method.

12M CO2 L3

		12101	002	LJ
	UNIT–III			
6.	Calculate the mean, median and mode for the following:			
	Mid Value 15 20 25 30 35 40 45 50 55			
	Frequency 2 22 19 14 3 4 6 1 1	12M	CO3	L3
	OR			
7.	Find the rank correlation coefficient for the following data			
	x 68 64 75 50 64 80 75 40 55 64			
	y 62 58 68 45 81 60 68 48 50 70	12M	CO3	L1
	UNIT–IV			
8. a)	Two marbles are drawn in succession from a box containing			
	10 red, 30 white, 20 blue and 15 orange marbles, with			
	replacement being made after each draw. Find the probability			
	that (i) Both are white (ii) First is red and second is white.	6M	CO4	L1
b)	In a bolt factory machines A, B, C manufacture 20%, 30% and			
-	50% of the total of their output 6%, 3% and 2% are defective.			
	A bolt is drawn at random and found to be defective. Find the			
	probabilities that it is manufactured from (i) Machine A			
	(ii) Machine B (iii) Machine C.	6M	CO4	L1
	OR			
9.	The frequency function of a continuous random variable X is			
	given by $f(x) = c x(2-x), 0 \le x \le 2$. Find the value of c, mean			
	and variance of X.	12M	CO4	L5
	UNIT-V			
10, a)	20% of items produced from a factory are defective. Find the			
101 0)	probability that in a sample of 5 chosen at random (i) none is			
	defective (ii) one is defective (iii) $p(1 < x < 4)$	6M	CO5	11
b)	The average number of phone calls/ minute coming into a	OW	005	
0)	switch board between 2 pm and 4 pm is 2.5. Determine the			
	probability that during one particular minute there will be (i) 4 or			
	fewer (ii) more than 6 calls.	6M	CO5	11
	OR	0101	005	L I
11.	The marks obtained in mathematics by 1000 students is			
	normally distributed with mean 78% and standard deviation			
	11%. Determine (i) How many students got marks above 90%			
	(ii) What was the highest mark obtained by the lowest 10% of			
	the students (iii) Within what limits did the middle of 90% of the			
	students lie.	12M	CO5	L1

Ha	III Ticket Number :											
Cod	e: 20A241T				1 1	<u>I</u>	1 1	[R-20		
II B.	Tech. II Semester	-	ectric	al M	achi	nes - I	I		s May/.	lune 20	24	
Max	. Marks: 70			****	****				Tin	ne: 3 Ho	Urs	
Note	1. Question Paper2. In Part-A, each3. Answer ALL th	question	carries	parts (Two 1	Part- marks	S.	art-B)				
			(Com	PAR pulsor		stion)						
1. Ar	nswer <i>all</i> the follow	wing sho	ort ans	swer c	questi	ons	(5	X 2 =	10M)	CO	BT	٦L
,	rite down the co aximum torque.	ondition	for r	naxin	num	torque	and	l the	value	of CO1		L1
b) Dr	aw the power flow	w diagra	am of	a 3-	Indu	uction r	noto	r.		CO2		L2
c) W	hat are the applic	ations o	of univ	/ersal	mote	or?				CO3		L1
d) Br	ief about concent	trated a	nd dis	stribut	ed w	indings	6.			CO4		L2
•	rite the necessary ernator.	/ and su	ufficie	nt cor	ditio	ns for p	barall	el op	eration	of CO5		L2
				PAR		-				、		
	Answer <i>five</i> question	ns by cho	osing o	ne que	stion	from eac	ch uni	t (5 x	12 = 60 N	farks) Marks	со	BL
			Γ	UNI	T_I]				Marks	00	DL
2. a)	With a neat di Three phase inc	-	-	ain th		onstru	ction	al de	etails of	6M	CO1	L2
b)	A 400 V, 50Hz, 50 A current at copper losses a and windage lo 1200W. Determ	0.8 po ire 1.5k osses a	wer fa W and are 10	actor d 900 050 V	laggi W, r V an	ing the espect	e stat tively	tor ai [,] The	nd rotoi	 	CO1	
				O	२							
	With neat diagr Induction motor	for diff	erent	rotor	resis	stances	S.			6M	CO1	L2
b)	A three - phase motor is running magnetic field t respect to stato	g at a s o rotor	lip of magr	5%. C netic f	Comp	oute th	e sp	eed o	of stato		CO1	L3
				UNI	T—II							
4. a)	What is the nec star –delta start	ing met	thod c	of thre	e ph	ase in	duct	ion m	notor	8M	CO2	L3
b)	The rotor resist 3-phase slip-ri respectively. W per phase to be	ng ind hat sho	luction ould be	n mo e the	otor valu	is 0.0 e of ex	05 (terna	and al res	0.2 sistance	•		
	torque at startin	ig?								4M	CO2	L3
										Page 1	of 2	

Code: 20A241T

OR

5.	a)	Write the various methods of speed control of 3 phase induction motor.	8M	CO2	L2
	b)	How to get the operation of Induction generator from the Induction motor. Explain?		CO2	
		UNIT–III			
6.	a)	Explain the construction and working principle of capacitor start single phase induction motor	6M	CO3	L2
	b)	If an 8-pole induction motor running from a supply of 50HZ has an emf in the rotor of frequency 1.5HZ, analyze the slip and speed of the motor.	6M	000	
		OR	OIVI	CO3	L3
7	a)				
7.		Explain how starting torque is obtained in split phase single phase induction motors?	6M	CO3	L2
	b)	Explain the construction and working principle of Shaded Pole Induction Motors	6M	CO3	L2
		UNIT–IV			
8.	a)	Explain in detail the distributed and concentrated windings and how the performance of the machine can get affected by the winding's construction.	6M	CO4	L2
	b)	A 9 kVA, 208 V, 1200 rpm three phase, 60 Hz star-connected generator has a field winding resistance of 4.5 . The armature impedance is $(0.3 + j0.5)$ per phase. When the generator operates at full load and 0.8 pf lagging, the filed winding current is 5 A. Its rotational losses are 500W. Determine i) voltage regulation ii) efficiency of alternator iii) torque applied by the			
		prime mover.	6M	CO4	L3
		OR			
9.	a)	Explain the MMF method of determining the voltage regulation of alternator.	6M	CO4	L2
	b)	synchronous machine.	6M	CO4	L2
		UNIT–V			
10.		Explain the various starting methods of synchronous motor. OR	12M	CO5	L2
11.	a)	Explain in detail about various techniques to reduce hunting.	6M	CO5	L2
	b)	A 3-phase synchronous motor of 8500W at 1100V has synchronous reactance of 8 per phase. Find the minimum current and the corresponding induced e.m.f for full load condition. The efficiency of the machine is 0.8. Neglect armature			
		resistance.	6M	CO5	L3
		*** End ***			

*** End ***