\square
Code: 20A241T
II B.Tech. II Semester Regular Examinations August 2022
Electrical Machines - II
(Electrical and Electronics Engineering)
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$ CO Blooms
a) Define crawling and cogging.
b) List various types of starting methods $\mathrm{CO2}$
c) Explain how Torque-Slip Characteristics vary when adding CO3 L3
resistance to rotor circuit?
d) Write down the importance of Regulation. CO4
e) What is hunting? Explain?

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Describe with neat sketches the construction of a 3-phase cage-type induction motor
b) A 3-phase, $50 \mathrm{~Hz}, 4$ pole slip ring induction motor gives a reading of 120 V across slip rings on open circuit, when at rest and supplied with normal supply voltage. The rotor impedance per phase is $0.3+j 1.5$. Find the rotor current and torque when machine is running at 5% slip.

OR

3. a) Explain Torque-Slip characteristics of Induction motor
b) If an 8 -pole induction motor running from a supply of 50 HZ has an emf in the rotor of frequency 1.5 HZ , compute the slip and speed of the motor

UNIT-II

4. What is the necessity of starter and with neat diagram explain star -delta starting method of three phase induction motor OR
5. Explain the principle of induction generator operation

8M CO1 L2
6M CO1 L2

6M CO1 L3

> 4M CO1 L2 CO 2

UNIT-III

6. a) Why is the single-phase induction motor not self-starting? Explain.
b) What are the advantages of the capacitor-start motor over the split phase motor?

OR

7. A $1100 / 400 \mathrm{~V}, 1$-phase transformer gave the following test results: Open circuit test: 1100V, 2A, 180W on L.V. side Short circuit test 20V, 25A, 20W on H.V. side, Calculate the equivalent circuit constants. Also draw the equivalent circuit.

$$
6 \mathrm{M} \mathrm{CO}
$$

L3 UNIT-IV
8. a) Why is a rotating field system used in preference to a stationary field?
b) A star connected 3phase 4 pole 50 Hz alternator has a single layer winding in 24 stator slots. There are 50 turns in each coil and the flux per pole is 0.05 Wb . Find the open circuit voltage.

OR

9. a) Derive an expression for synchronizing torque when a 3-phase alternator is connected to infinite busbar.
b) Two alternators A and B operate in parallel and supply a load of 10 MW at 0.8 pf lagging. (i) By adjusting steam supply of A, its power output is adjusted to $6,000 \mathrm{KW}$ and by changing its excitation, its P.F is adjusted to 0.92 lag. Find the Power Factor of alternator B . (ii) If steam supply of both machines is left unchanged, but excitation of B is reduced so that it's P.F becomes 0.92 lead, find new P.F of A.

UNIT-V

10. a) Discuss and state the conditions necessary for paralleling alternators.
b) What are the various methods of synchronizing alternators?

OR

11. a) Name the different starting methods of synchronous motor, explain how the synchronous motor can start with help of damper winding.
b) A $75 \mathrm{KW}, 400 \mathrm{~V}, 4$-pole, 3 -phase, 50 Hz , star connected synchronous motor has a resistance and synchronous reactance of 0.04 and 0.4 , respectively. Computefor full load 0.8 pf lead the open circuit emf per phase and gross mechanicalpower developed. Assume an efficiency of 92.5%.
\square
Code: 20A242T
II B.Tech. II Semester Regular Examinations August 2022
Electrical and Electronics Measurements
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. In Part-A, each question carries Two mark.
 3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Give the classification of electrical measuring Instruments.

Blooms
Level
2
b) Enumerate the errors introduced by dynamometer type wattmeter.
c) Explain the significance of a Potentiometer.
d) State the applications of Wein bridge.
e) What are the advantages of successive approximation DVM?

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. Explain the construction and working of PMMC instrument along with a neat diagram

OR

3. a) Derive the equation for deflection torque if the instrument is spring controlled.
b) Explain the construction and operation of moving iron instruments.

8M 1

UNIT-II

4. Explain the working of a 3 phase dynamometer wattmeter. Draw a neat sketch of the wattmeter and also its connections. Describe how the mutual effects between the two elements of the wattmeter are eliminated?

OR

5. Explain the different sources of errors in Induction type Energy meter and how they can be adjusted/compensated.

UNIT-III

6. Explain the term standardization of a potentiometer. Describe the procedure of standardization of dc and ac potentiometers.

12M 3

OR

7. Explain the working of Coordinate type ac Potentiometer with neat sketch

12M 3

UNIT-IV

8. Draw Maxwell's AC bridge and give the balance equation of resistance.

OR

9. Sketch the circuit diagram of Anderson's bridge. Derive the equations for resistive and inductive components of the inductor to be measured.

12M 4

UNIT-V

10. Explain the working of successive approximation DVM with a neat sketch.

12M 5

OR

11. Write short note on the following:
(a) Ramp type DVM
(b) Digital tachometer

12M 5

Code: 20A243T

|| B.Tech. || Semester Regular Examinations August 2022
Electromagnetic Fields
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions	$(5 \times 2=10 \mathrm{M})$	CO	Blooms Level
a) What is electric flux density?	CO 1	L 1	
b) Mention any three applications of Gauss law.	CO 1	L 1	
c) List out the properties of vector magnetic potential.	CO 2	L 1	
d) Deduce the expressions for H and B of toroid.	CO 3	L 1	
e) What is Displacement current?	CO 4	L 1	

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) State and explain Maxwell's first law.
b) Determine D at $(4,0,3)$ if there is a point charge $-5 \pi \mathrm{mC}$ at $(4,0,0)$ and a line charge $3 \pi \mathrm{mC} / \mathrm{m}$ along the y -axis.

Marks CO | Blooms |
| :---: |
| Level |

OR

3. a) Define and explain Coulomb's law of electrostatics field in vector form.

6M CO1
b) A charge 1 C is at $(2,0,0)$. What charge must be placed at $(-2,0,0)$ which will make y component of total E zero at the point $(1,2,2)$?

6M CO1 L3

UNIT-II

4. a) Derive the relationship between electric field and electric potential.

6 M CO 2
L1
b) Two point charges of 1 micro coulomb and -1 micro coulomb are located at $(0,0,1)$ and $(0,0,-1) \mathrm{m}$ respectively in free space. (i) Find the potential at $(0,3,4) \mathrm{m}$ (ii) Recalculate the same potential treating the charges as a pure dipole.

OR

5. a) Show the expression of the capacitance for a spherical capacitor which consists of 2 concentric spheres of radius ' a ' \& ' b '. Also obtain the capacitance for an isolated sphere.

6 M CO 2
L3
b) Using Laplace equations, obtain the expression to the capacity of a parallel plate condenser.
$6 \mathrm{M} \mathrm{CO2}$

UNIT-III

6. a) Show that the magnetic field intensity at the end of a solenoid is equal to the half of the magnetic field at the centre of the solenoid.
b) A filamentary current of 15 A is directed in from infinity to the origin on the positive x axis and then back out to infinity along the position y axis. Use the Biot-Savart's law to find H at $\mathrm{P}(0,0,1)$.

OR

7. a) Enumerate the Biot-Savart's law for magnetic field B due to a steady line current in free space.
b) Find the magnetic field at a point $\mathrm{P}(0.001,0,0) \mathrm{m}$ if current through the coaxial cable is 6 A , which is along z -axis and $\mathrm{a}=3 \mathrm{~mm}, \mathrm{~b}=9 \mathrm{~mm}, \mathrm{c}=11 \mathrm{~mm}$.

UNIT-IV

8. Write short notes on the following:
a) Lorentz force equation.
b) Magnetic dipole and dipole moment.

OR

9. a) Derive the expression for self-Inductance of a solenoid.
b) A solenoid with 300 turns is 300 mm long and 30 mm in diameter. If the current is 500 mA , calculate i) Inductance ii) Energy stored in solenoid. Assume $\mu_{r}=1$.

UNIT-V

10. a) Mention Maxwell's equations for time varying fields and make their word statements.
b) A parallel plate capacitor with plate area of 5 cm 2 and plate separation of 3 mm has voltage $50 \sin 10^{3} \mathrm{t} \mathrm{V}$ applied to its plates. Calculate displacement current. (Assuming $=2$ o)

OR

11. a) What is Poynting theorem? Also mention the significance of Poynting Vector.
b) Discuss about statistically induced emf and dynamically induced emf.

6 M CO 2

6 M CO
$6 \mathrm{M} \mathrm{CO1}$

6M CO1

6M CO4

II B.Tech. Il Semester Regular Examinations August 2022

Managerial Economics \& Financial Analysis

(Common to EEE \& ME)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}$
a) Explain various types of demand
b) What are external economies of scale? Explain any two.

CO2
c) Explain disadvantages of Joint Hindu family.

CO3
d) What are the features of capital budgeting?

CO4
e) What are the advantages of Book Keeping?

CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

Marks	CO	Blooms Level
$6 M$	CO1	L1
$6 M$	CO1	L2
$6 M$	CO1	L2
$6 M$	CO1	L1
$6 M$	CO2	L2

b) A High-Tech rail can Carry a maximum of 36000 passengers per annum at a fare of Rs 400. The variable cost of passenger is Rs.150. While the Fixed Costs are $25,00,000$ per year. Find The Break-Even Point in terms of number of passengers and also in terms of fare collections.

6M CO2
2. a) Define Managerial Economics. Explain its nature.
b) Explain the factors governing demand forecasting.

OR

3. a) Explain various survey methods of demand forecasting.

6M-CO2
L2
4. a) Discuss about Cob-Douglas production function.

OR

5. a) Discuss law of variable proportions with assumed data

6M CO2
b) Define ISO-Quant. What are its Features? Explain Briefly

6 M CO 2

UNIT-III

6. a) Explain the price determination in Monopolistic competitive market.
b) Distinguish between 'partnership' and 'Joint Stock Company' business.

6M CO3
OR
7. a) Describe 'monopoly' and 'perfect competition' with suitable examples.

6M CO3
b) Explain the merits and demerits of government companies
$6 \mathrm{M} \mathrm{CO3}$

UNIT-IV

8. a) Differentiate between NPV and payback period method

6M CO4
b) What do you mean by capital? Explain its significance.

6M CO4
9. a) Define long term capital. Explain various sources of long-term capital.

6M CO4
L1
9. b) Consider the case of the company with the following two investment alternatives each costing 4,50,000. The details of the cash inflows are as follows:

Year	Cash inflows in Rs.	
	Project-1	Project- 2
1	$1,50,000$	$3,00,000$
2	$2,50,000$	$2,00,000$
3	$3,00,000$	$1,50,000$

Calculate:
i. Pay Back Period ii. Accounting Rate of Return (ARR)
10. a) Discuss in detail how a liquidity and solvency ratios are useful in the financial statements.
$6 \mathrm{M} \mathrm{Co5}$
b) Define accounting. Explain various Principles of accounting.
$6 \mathrm{M} \mathrm{CO5}$
OR
11. From the following trial balance of Mr. Suresh and Co. as at December 31, 2020, prepare trading, profit and loss account for the year ending December 31, 2020 and a balance sheet as on that date:

	Dr (Rs)	Cr (Rs)
Purchase of materials	32,000	-
Productive wages	13,000	-
Sales	-	60,000
Salaries	4,000	-
Traveling expenses	1,000	-
Carriage inwards	550	-
Insurance	300	-
Commission	650	-
Rent and rates	1,000	-
Cash in hand	350	-
Cash at bank	5,550	-
Repairs	600	-
Sundry expenses	110	-
Mortgage	-	6,100
Buildings	8,000	-
Machinery	3,000	-
Furniture	1,000	-
Stock in hand (1.1.2020)	11,500	-
Capital	-	21,310
Sundry debtors	9,000	-
Sundry creditors	-	4,200
Total	91,610	91610

Adjust the following:

a) Depreciate the following:

- Building @10 \% per annum
- Machinery @ 20 \% per annum
- Furniture @ 15% per annum
b) Provide for bad debts Rs. 100
c) Outstanding insurance Rs. 50
d) Closing stock Rs. 12,000
\square
Code: 20AC42T

Numerical Methods and Random Variables

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions
(5 X $2=10 \mathrm{M}$)
a) Find the missing term in the following data:
b) Given $\frac{d y}{d x}=1-y \sum_{y \text { witr }}$ initial condition $\frac{\square}{y=0} 0$ at $\frac{1}{x=0}$; find $\frac{1}{y \text { for } x=1} 0$ by Euler's method. Use $h=0.05$.
c) Find the mode of the numbers $7,7,7,9,10,11,11,11,11,12$.
d) State the Addition Law of Probability.
e) The average number of phone calls/minute coming into a switch board between 2 and 4 PM is 2.5 . Determine the probability that during one particular minute there will be 2 calls.

 0.2 by Euler's														

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

 to four decimal places.

6M CO1
L1
b) From the following table predict the number of students who obtained marks between 40 and 45.

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

$6 \mathrm{M} \mathrm{CO1}$
3. a) Find the positive root of $\vec{\square}$ Newton - Rapson method. $-x=1$
b) Newrmine the polynomial $-x=$ using Lagrange's formula and hence find ${ }^{\text {Dete }}$ for

\cdots	0	1	2	5
\underline{x}	2	3	12	147
UNIT-II				

6 M CO1 L3
4. a) Use the Trapezoidal rule to calculate the integral $\underset{\substack{z=\\ 0 \\ e \\ e e^{x^{2}}}}{\overrightarrow{-}} d x$ taking 10 intervals.
 equation $\frac{d y}{d x}=\begin{gathered}\text { Euler's mett }{ }^{2}{ }^{2}+y^{2} \text {, gimin }\end{gathered}$

OR

5. a) Determine $\int_{0}^{-\epsilon} \frac{d x}{1+x^{2}}$ by using simpscen's $3 / 8$ rule.
 $\frac{d y}{d x}=\begin{aligned} & \text { Runge-K } 1_{\text {dta }} m \\ & x y+y^{2}, y(0)\end{aligned}=1$.

UNIT-III

6. The following table shows the marks obtained by 100 candidates in an examination. Calculate the mean, median and mode:

Marks Obtained	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$
No. of candidates	3	16	26	31	16	8

OR

7. Determine the correlation coefficient for the following data:

- ${ }^{\text {ato }}$	2	4	6	8	10
	5	7	9	8	11

OR

9. A random variables X has the following probability function:

x	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	K	2 K	2 K	3 K	$\mathrm{~K}^{2}$	$2 \mathrm{~K}^{2}$	$7 \mathrm{~K}^{2}+\mathrm{K}$

Determine: (i) K (ii) Evaluate $\mathrm{P}(\mathrm{X}<6), \mathrm{P}(X \geq 6), \mathrm{P}(0<\mathrm{X}<5)$ and $\mathrm{P}(0 \leq X \leq 4)$
(iii) If $P(X \leq K)>\frac{1}{2}$, find the minimum value of K and (iv) Determine the distribution function of $X(v)$ Mean (vi) variance.

UNIT-V

10. a) The probability of a man hitting a target is $1 / 3$. (i) If he fires 5 times, what is the probability of his hitting the target at least twice? (ii) How many times must he fire so that the probability of his hitting the target at least once is more than 90% ?
b) In a factory producing blades, the probability of any blade being defective is 0.002 . If blades are supplied in packets of 10 , determine the number of packets containing (i) no defective (ii) one defective blades respectively in a consignment of 10000 packets.

OR

11. a) If X is a normal variate with mean 30 and standard deviation 5 . Find the probabilities that (i) $26 \leq X \leq 40$ (ii) $\mathrm{X} \geq 45$.
b) Fit a binomial distribution to the following data

x	0	1	2	3	4	5
f	2	14	20	34	22	8

6 M CO 2

6 M CO 2

12 M CO 3
$6 \mathrm{M} \mathrm{CO5}$
6 M CO2 L3

12 M CO 3
L3

$6 \mathrm{M} \mathrm{CO5}$
L3

6M C05 L1

6M C05

