		Hall Ticket Number :													_
	С	ode: 20A241T	1 1	1		LI							R-2	20	
		ll B.Tech.			-						۹ndn	st 202	2		
								nes							
	\sim	1ax. Marks: 70	(Electric					S Ené	gine	eenr	ig)		Time: 3	3 Hou	irs
	N	ote: 1. Question Paper 2. In Part-A, each 3. Answer ALL th	question	carri	vo pa ies T	wo n	Part- nark	•		art-B	3)				
				(Co	_	PAR Ilsory		stion))						
	1.	Answer ALL the follo	wing sh	ort ai	nswe	er que	estio	ns	(5	5 X 2	= 10	M)		со	Blooms Level
	a) [Define crawling and	coggin	g.									(CO1	L1
	b) L	ist various types of	starting	g me	ethoo	ds							(CO2	L1
		Explain how Torque	•	nara	cteri	istics	s va	ry wł	nen	ado	ding		(CO3	L3
	d) V	Vrite down the impo	ortance	of R	legu	latio	n.						(CO4	L2
	e) V	Vhat is hunting? Ex	plain?										(CO5	L1
					I	PAR	Г-В								
		Answer <i>five</i> questio	ns by cho	osinį	g one	ques	stion	from	eac	h uni	it (5 x	x 12 = 6	60 Mark	(s)	Diagmo
					NIT-	•							Marks	СО	Blooms Level
2	a)	Describe with ne	at skoti				netr	uctio	n d	of a	3-n	hasa			
۷.	u)	cage-type induction					150	uono			υp	nasc	6M	СО	1 L2
	b)	A 3-phase, 50 H			lip r	ing	indu	ictior	n m	noto	r giv	es a			
	,	reading of 120 V a	across s	slip r	ings	on	oper	n circ	cuit	, wh	en a	t rest			
		and supplied with per phase is 0.3 +		•			•				•				
		machine is running	-			0101	Cun	GIILO	anc		que	WIICH	6M	СО	1 L3
			9		OR								••••		
3.	a)	Explain Torque-SI	ip chara	acte	ristic	s of	Ind	uctio	n n	noto	r		8M	СО	1 L2
	b)	If an 8-pole induct	ion mot	or ru	Innir	ng fr	om a	a sup	oply	/ of	50HZ	Z has			
	-	an emf in the roto	or of fre	quer	ncy	1.5H	łΖ, c	comp	oute	e the	e slip	and			
		speed of the moto	or										4M	CO	1 L2
					VIT-										
4.		What is the neces	-							-		-	1014	CO	2 L2
		star –delta startinę	ymetho		unre OR	e h	iast		ucti		100	I	12M		
5.		Explain the princip	ole of in		-	nen	arato	or on	ora	ntion			12M	$C \cap $	2 L2
υ.				uuul		yone	Jai	n ob							

Page **1** of **2**

UNIT-III

6.	a)	Why is the single-phase induction motor not self-starting? Explain.	6M	CO3	L3
	b)	What are the advantages of the capacitor-start motor over the split phase motor?	6M	CO3	L2
		OR			
7.		A 1100/400V, 1-phase transformer gave the following test results: Open circuit test: 1100V, 2A, 180W on L.V. side			
		Short circuit test 20V, 25A, 20W on H.V. side, Calculate the equivalent circuit constants. Also draw the equivalent circuit.	12M	CO3	L3
8.	a)	Why is a rotating field system used in preference to a stationary field?	6M	CO4	L2
	b)	A star connected 3phase 4pole 50Hz alternator has a single layer winding in 24 stator slots. There are 50 turns in each coil and the flux per pole is 0.05 Wb. Find the open circuit voltage. OR	6M	CO4	L3
9.	a)	Derive an expression for synchronizing torque when a 3-phase alternator is connected to infinite busbar.	6M	CO4	L2
	b)	Two alternators A and B operate in parallel and supply a load of 10MW at 0.8pf lagging. (i) By adjusting steam supply of A, its power output is adjusted to 6,000KW and by changing its excitation, its P.F is adjusted to 0.92 lag. Find the Power Factor of alternator B. (ii) If steam supply of both machines is left unchanged, but excitation of B is reduced so that it's P.F			
		becomes 0.92 lead, find new P.F of A. UNIT-V	6M	CO4	L3
10.	a)	Discuss and state the conditions necessary for paralleling alternators.	6M	CO5	L2
	b)	What are the various methods of synchronizing alternators? OR	6M	CO5	L2
11.	a)	Name the different starting methods of synchronous motor, explain how the synchronous motor can start with help of damper winding.	6M	CO5	L2
	b)	A 75KW, 400V, 4-pole, 3-phase, 50Hz, star connected synchronous motor has a resistance and synchronous reactance of 0.04 and 0.4, respectively. Compute for full load 0.8pf lead the open circuit emf per phase and gross			
		mechanical power developed. Assume an efficiency of 92.5%. *** End ***	9M	CO5	L3

Hall Ticket Number :			
Code: 20A242T	R-	20	
II B.Tech. II Semester Regular Examinations August 20 Electrical and Electronics Measurements (Electrical and Electronics Engineering)	22		
Max. Marks: 70 *******	Time:	3 Ho	Urs
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$		СО	Blooms
a) Give the classification of electrical measuring Instruments.		1	Level 2
b) Enumerate the errors introduced by dynamometer type wattme	eter.	2	2
c) Explain the significance of a Potentiometer.		3	1
d) State the applications of Wein bridge.		4	1
e) What are the advantages of successive approximation DVM?		5	1
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	60 Mar	ks)	
	Marks	со	Blooms Level
UNIT–I			
2. Explain the construction and working of PMMC instrument along with a neat diagram	12M	1	2
OR			
3. a) Derive the equation for deflection torque if the instrument is spring controlled.	4M	1	4
b) Explain the construction and operation of moving iron instruments.	8M	1	2
UNIT–II			
4. Explain the working of a 3 phase dynamometer wattmeter. Draw a neat sketch of the wattmeter and also its connections. Describe how the mutual effects between the two elements of the wattmeter are eliminated?	12M	2	2
OR Explain the different equirage of errors in Induction type			
5. Explain the different sources of errors in Induction type Energy meter and how they can be adjusted/compensated.	12M	2	2

	Code: 2			
	UNIT–III			
6.	Explain the term standardization of a potentiometer. Describe the procedure of standardization of dc and ac potentiometers.	12M	3	2
	OR		-	
7.	Explain the working of Coordinate type ac Potentiometer with neat sketch	12M	3	2
	UNIT–IV			
8.	Draw Maxwell's AC bridge and give the balance equation of resistance.	12M	4	3
9.	Sketch the circuit diagram of Anderson's bridge. Derive the equations for resistive and inductive components of the inductor to be measured.	12M	4	3
	UNIT–V			
10.	Explain the working of successive approximation DVM with a neat sketch.	12M	5	2
11.	Write short note on the following:			
	(a) Ramp type DVM(b) Digital tachometer*** End ***	12M	5	2

Hall Ticket Number :										
Code: 20A243T	R-20									
II B.Tech. II Semester Regular Examinations August 2022										
Electromagnetic Fields										
(Electrical and Electronics Engineering)										
Max. Marks: 70	Time: 3 Hours									
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 										
(Compulsory question) 1. Answer ALL the following short answer questions (5 X 2 = 10	OM) CO Blooms Level									
a) What is electric flux density?	CO1 L1									
b) Mention any three applications of Gauss law.	CO1 L1									
c) List out the properties of vector magnetic potential.	CO2 L1									
d) Deduce the expressions for H and B of toroid.	CO3 L1									
e) What is Displacement current?	CO4 L1									
PART-B Answer <i>five</i> questions by choosing one question from each unit $(5 \ge 12 = 60 \text{ Marks})$										

Answer *five* questions by choosing one question from each unit ($5 \times 12 = 60$ Marks)

		UNIT–I	Marks	СО	Blooms Level
2.	a)	State and explain Maxwell's first law.	6M	CO1	L1
	b)	Determine D at $(4, 0, 3)$ if there is a point charge -5 mC at $(4, 0, 0)$ and a line charge 3 mC/m along the y-axis.	6M	CO1	L3
		OR			
3.	a)	Define and explain Coulomb's law of electrostatics field in vector form.	6M	CO1	L1
	b)	A charge 1 C is at (2,0,0). What charge must be placed at (-2,0,0) which will make y component of total E zero at the point (1,2,2)?	6M	CO1	L3
4.	a)	Derive the relationship between electric field and electric potential.	6M	CO2	L1
	b)	Two point charges of 1 micro coulomb and -1 micro coulomb are located at $(0,0,1)$ and $(0,0,-1)$ m respectively in free space. (i) Find the potential at $(0,3,4)$ m (ii) Recalculate the same potential treating the charges as a pure dipole.	6M	CO2	L4
		OR			
5.	a)	Show the expression of the capacitance for a spherical capacitor which consists of 2 concentric spheres of radius 'a' & 'b'. Also obtain the	614	000	
		capacitance for an isolated sphere.	6M	CO2	L3
	b)	Using Laplace equations, obtain the expression to the capacity of a parallel plate condenser.	6M	CO2	L4

			JUUE. 4	084431	
		UNIT–III			
6.	a)	Show that the magnetic field intensity at the end of a solenoid is equal to			
		the half of the magnetic field at the centre of the solenoid.	6M	CO2	L4
	b)	A filamentary current of 15A is directed in from infinity to the origin on the			
		positive x axis and then back out to infinity along the position y axis. Use the Riet Severt's law to find H at $P(0, 0, 1)$	CN/		
		the Biot-Savart's law to find H at P (0, 0, 1). OR	6M	CO2	L4
-	、				
7.	a)	Enumerate the Biot-Savart's law for magnetic field B due to a steady line current in free space.	6M	CO1	L2
	b)	Find the magnetic field at a point P(0.001,0,0) m if current through the co-			
		axial cable is 6A, which is along z-axis and a=3mm, b=9mm, c=11mm.	6M	CO1	L3
		UNIT–IV			
8.		Write short notes on the following:			
		a) Lorentz force equation.			
		b) Magnetic dipole and dipole moment.	12M	CO3	L4
		OR			
9.	a)	Derive the expression for self-Inductance of a solenoid.	6M	CO3	L5
	b)	A solenoid with 300 turns is 300 mm long and 30mm in diameter. If the			
		current is 500mA, calculate i) Inductance ii) Energy stored in solenoid.			
		Assume $\mu_r = 1$.	6M	CO3	L5
		UNIT-V			
10.	a)	Mention Maxwell's equations for time varying fields and make their word statements.	6M	CO4	L4
	b)	A parallel plate capacitor with plate area of 5cm2 and plate separation of			
		3 mm has voltage 50 sin 10 ³ t V applied to its plates. Calculate			
		displacement current. (Assuming $=2$ _o)	6M	CO4	L4
		OR			
11.	a)	What is Poynting theorem? Also mention the significance of Poynting			
		Vector.	6M	CO4	L4
	b)	Discuss about statistically induced emf and dynamically induced emf.	6M	CO4	L4

*** End ***

Code: 20A243T

H	lall Ticket Number :									
Co	de: 20AC45T							R-20		
0	II B.Tech. II Semester Regi	Jar Exar	minat	ions	Augi	ust 20	022			
	Managerial Econor				-					
Ma	(Commo ax. Marks: 70	n to EEE &	& ME)			Tirr	ne: 3 F		
IVIC		*****					1111	10.01	10013	
No	 te: 1. Question Paper consists of two par 2. In Part-A, each question carries To 3. Answer ALL the questions in Par 	vo mark.		Part-	B)					
	*	ART-A								
	(Compu	lsory ques	tion)							
	1. Answer ALL the following short a	nswer qu	estion	S	(5X	2 = 1	0M)	C	()	3looms Level
aj) Explain various types of demand								01	L3
b		•	ny two).					02	L1
C)	, I 8	•							03	L3
d	, 1 0	•							04	L1
e) What are the advantages of Book Keep	oing?						С	05	L1
		ART-B			• =					
	Answer <i>five</i> questions by choosing one	question f	rom ea	ach u	nit (5	x 12 =	= 60 N			Blooms
	UNIT	_1						Marks	CO	Level
a)	Define Managerial Economics. Explain i							6M	CO1	L1
b)	Explain the factors governing demand for	precasting.						6M	CO1	L2
a)	OR Explain various survey methods of dema		stina					6M	CO1	L2
b)	Define Price elasticity of demand? Expla		•						CO1	L2 L1
	UNIT-									
a)	Discuss about Cob-Douglas production							6M	CO2	L2
b)	A High-Tech rail can Carry a maximum fare of Rs 400. The variable cost of pa	•		•	•					
	Costs are 25,00,000 per year. Find The	0								
	of passengers and also in terms of fare							6M	CO2	L4
	OR									
a)	Discuss law of variable proportions with							6M	CO2	
b)	Define ISO-Quant. What are its Features UNIT-		Briefl	У				6M	CO2	L1
a)	Explain the price determination in Mono		mpetiti	ive m	arket.			6M	CO3	L2
b)	Distinguish between 'partnership' and 'J	oint Stock				ess.		6M	CO3	L4
a)	OR Describe 'monopoly' and 'perfect compe		suita	ہم ماد	amnle	20		6M	CO3	L2
b)	Explain the merits and demerits of gover				ampic			6M	CO3	LZ
	UNIT-									
a) b)	Differentiate between NPV and payback	•						6M 6M	CO4	L4
b)	What do you mean by capital? Explain it OR	•						UNI	CO4	L1
a)	Define long term capital. Explain various		of long	-term	capita	al.		6M	CO4	L1

6M CO5

6M CO5

L4

L1

9. b) Consider the case of the company with the following two investment alternatives each costing 4,50,000. The details of the cash inflows are as follows:

Year	Cash inflows in Rs.					
real	Project-1	Project- 2				
1	1,50,000	3,00,000				
2	2,50,000	2,00,000				
3	3,00,000	1,50,000				

Calculate:

i. Pay Back Period	ii. Accounting Rate of Return (ARR)	6M CO4 BL3
--------------------	-------------------------------------	------------

UNIT–V

- 10. a) Discuss in detail how a liquidity and solvency ratios are useful in the financial statements.
 - b) Define accounting. Explain various Principles of accounting.

OR

11. From the following trial balance of Mr. Suresh and Co. as at December 31, 2020, prepare trading, profit and loss account for the year ending December 31, 2020 and a balance sheet as on that date:

	Dr (Rs)	Cr (Rs)
Purchase of materials	32,000	-
Productive wages	13,000	-
Sales	-	60,000
Salaries	4,000	-
Traveling expenses	1,000	-
Carriage inwards	550	-
Insurance	300	-
Commission	650	-
Rent and rates	1,000	-
Cash in hand	350	-
Cash at bank	5,550	-
Repairs	600	-
Sundry expenses	110	-
Mortgage	-	6,100
Buildings	8,000	-
Machinery	3,000	-
Furniture	1,000	-
Stock in hand (1.1.2020)	11,500	-
Capital	-	21,310
Sundry debtors	9,000	-
Sundry creditors	-	4,200
Total	91,610	91610

12M CO5 BL3

Adjust the following:

- a) Depreciate the following:
 - Building @10 % per annum
 - Machinery @ 20 % per annum
 - Furniture @ 15 % per annum
- b) Provide for bad debts Rs.100
- c) Outstanding insurance Rs.50
- d) Closing stock Rs. 12,000

*** End ***

		Hall Ticket Number :			
			R-2	20	
	C	∟ II B.Tech. II Semester Regular Examinations August 202	<u>ົ</u>		
		Numerical Methods and Random Variables	Ζ		
		(Common to EEE & ECE)			
	Μ		Time:	3 Hou	Jrs

	No	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
		 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
		PART-A			
		(Compulsory question)			
	1.	Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$	(co ^I	Blooms Level
a)	Fin	d the missing term in the following data:			
			C	CO1	L1
b)	Giv	ven $dy = 1$.2 by Eul	er's		
	me	$\frac{dy}{dx} = 1 - \frac{1}{y}$ initial condition $\frac{1}{y} = 0$ at $\frac{1}{x} = 0$; find $\frac{1}{y}$ for $x = 1$.2 by Eul thod. Use $h = 0.05$.		:02	L1
c)		d the mode of the numbers 7, 7, 7, 9, 10, 11, 11, 11, 11, 12.		;O2 ;O3	L2
d)		ate the Addition Law of Probability.		;00 ;04	L1
e)		e average number of phone calls/minute coming into a switch board betwee			_ '
0)		d 4 PM is 2.5. Determine the probability that during one particular minute there			
	be	2 calls.	C	CO5	L3
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 6$	0 Marl	ks)	D.
			Marks	CO	Blooms Level
		UNIT–I			
2.	a)	Find the root of the equation $\frac{1}{\cos x} = \frac{1}{\cos x} $	CN 4	004	14
	b)	to four decimal places. $\cos x = xe^{-4}$ usin	DIVI	CO1	L1
	b)	From the following table predict the number of students who obtained marks between 40 and 45.			
		Marks 30-40 40-50 50-60 60-70 70-80			
		No. of students 31 42 51 35 31	6M	CO1	L3
		OR			
3.	a)	Find the positive root of $\frac{\frac{4}{1}}{\frac{4}{4}} = 0$ correct to three decimal places, using			
		Newton – Rapson meth $_{od}^{x^+} - x = 1$	6M	CO1	L1
	b)	New rmine the polynomial $-\infty$ / using Lagrange's formula and hence find			
		f(x) =			
		2 3 12 147	6M	CO1	L3
		UNIT–II			
4.	a)	Use the Trapezoidal rule to calculate the integral $\int_{-2}^{-2} e^{-x^2}$ 10			
		intervals. $0 e dx$ taking	6M	CO2	L3

		Co	ode: 20	DAC42T	
	b)	Using modified $\frac{dy}{dx} = \frac{e^{\text{uler's meth}}}{x^2 + y^2}$, given that $y(0) = 1$.			
		equation $\frac{dy}{dx} = \frac{2}{x^2 + y^2}$, given that $y(0) = 1$.	6M	CO2	L3
		OR			
5.	a)	Determine $\int_{0}^{\epsilon} \frac{dx}{1+x^2}$ by using simpson n's 3/8 rule.			
		$\int_{0}^{1+x_2} by us_{\text{ing Simpsol}} = 0.000000000000000000000000000000000$	6M	CO2	L3
	b)	Using mine $\int_{0}^{c} \frac{1}{1+x^{2}} t$ ethod of order 4, calculate y for $x = 0.1, 0.2$, given that $\frac{dy}{dx} = \frac{\text{Runge-Kutta m}}{xy + y^{2}, y(0)} = 1.$			
		$\frac{1}{dx} - \frac{1}{xy} + \frac{y^2}{y(0)} = 1.$	6M	CO2	L3
•					
6.		The following table shows the marks obtained by 100 candidates in an examination. Calculate the mean, median and mode:			
		Marks Obtained 1-10 11-20 21-30 31-40 41-50 51-60			
		No. of candidates 3 16 26 31 16 8	12M	CO3	L3
		OR			
7.		Determine the correlation coefficient for the following data:			
		2 4 6 8 10			
		5 7 9 8 11	12M	CO3	L3
8.		Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and 15 orange marbles, with replacement being made after			
		each drawing. Find the probability that (a) both are white (b) first is red and			
		second is white (c) neither is orange.	12M	CO4	L2
		OR			
9.		A random variables X has the following probability function:			
		x 0 1 2 3 4 5 6 7 P(x) 0 K 2K 2K 3K K ² 2K ² 7K ² +K			
		P(x)0K2K2K3K K^2 $2K^2$ $7K^2+K$ Determine: (i) K (ii) Evaluate P(X<6), P(X ≥ 6), P(0 <x<5) 4)<="" and="" p(0="" td="" x="" ≤=""></x<5)>			
		(iii) If $P(X \le K) > \frac{1}{2}$, find the minimum value of K and (iv) Determine the			
		distribution function of X (v) Mean (vi) variance.	12M	CO4	L5
10		UNIT-V The probability of a map bitting a target is $1/2$ (i) If he first 5 times, what is			
10.	a)	The probability of a man hitting a target is 1/3. (i) If he fires 5 times, what is the probability of his hitting the target at least twice? (ii) How many times			
		must he fire so that the probability of his hitting the target at least once is			
		more than 90%?	6M	CO5	L3
	b)	In a factory producing blades, the probability of any blade being defective is			
		0.002. If blades are supplied in packets of 10, determine the number of packets containing (i) no defective (ii) one defective blades respectively in a			
		consignment of 10000 packets.	6M	CO5	L3
		OR			
11.	a)	If X is a normal variate with mean 30 and standard deviation 5. Find the		• • -	
	۲) ۲	probabilities that (i) $26 \le X \le 40$ (ii) $X \ge 45$.	6M	C05	L1
	b)	Fit a binomial distribution to the following datax012345			
		f 2 14 20 34 22 8	6M	C05	L1
		*** End ***			