	Н	all Ticket Number :														
		de: 20A443T											1	R-20		
		3.Tech. II Semester	E	lect	rom	agr	netic	: The	eory	/			uL / Yr	ne 2	024	
	Ма	x. Marks: 70	ectronic	.5 0110		****		uno		gine	enni	91	Time	e:3I	Hours	
	Not	e: 1. Question Paper 2. In Part-A, each 3. Answer ALL th	question	n carr	ies T	'wo i	nark	s.		art-F	6)					
				(C		PAR' ulsor	<u>T-A</u> y que	estior	n)							
1. A	nsw	er ALL the followin	ng shoi	rt ans	swer	que	estio	ns ((5 X	2 =	10	(N			CO	BL
a)		nsform the Carte	esian d	co-or	dina	ates	X=2	2, y=	=1 a	nd	z=3	into	sphe	rica	 1	2
b)	Fin	d the electric po	tential	Vа	t a	poir	nt (4	., 1,	3)r	n dı	ue t	оа	charg	e of		_
,		μC located at the				-	•		,				0		2	1
c)	А	parallel plate ca	pacito	r witł	n d	=1m	n ar	nd p	late	ar	ea ().8	m² an	d a	I	
		lectric relative p		•									is app	oliec	1	
		ween the plates.			apa	citar	nce	and	ene	ergy	sto	red.			2	2
		te Ampere's circ													2	1
e)	Wri	te down Maxwel	l's equ	atior	ns de	erive	ed fr	om	Far	ada	y's l	aw.			3	2
	•	nowar five question		oooin		PAR		n fra		aab		(E y)	12 - 60	Mor	ka)	
	A	nswer <i>five</i> questions	s by ch	oosin	g on	e qu	estic		om e	acn	unit	(5 X)		rks	KS) CO	BL
						UNI	T—I									BE
2.	a)	State and prove	e diver	genc	e th	eore	em?						6	5M	1	1
	b)	State Strokes T	heorer	n									6	5M	1	2
						OF	२									
3.	a)	Express the vec Given $B = \frac{10}{\pi}$ / r						•			•					
		and (5 , $\frac{\pi}{2}$, -2)											7	7M	1	1
	b)	Write down the curl in three co-	-			-	radi	ent,	div	erg	enco	e an		5M	1	2
					l	JNIT	[—]]									
4.	a)	Explain the Gau	iss's L	aw a	nd i	ts a	pplio	catio	ons				6	5M	2	1
	b)	Derive the Energy present in the fr		•	expi	ress	ion	for t	he t	hree	e ch	arge		6M	2	2

Code: 20A443T

5.	a)	Derive the expression of E for infinite line charge conductor present in the z axis.	6M	2	2
	հ)		OIVI	Ζ	3
	b)	Derive the expression of E for infinite surface charge located in the z=0 plane.	6M	2	2
				Ζ	2
6	a)	Explain linear, Isotropic and homogeneous dielectric			
0.	a)	materials.	7M	2	1
	b)	Derive and explain the Poisson and Laplace Equations.	5M	2	2
		OR			
7.	a)	Derive the continuity equation for the time varying fields	7M	2	2
	b)	Derive and explain the Relaxation Time	5M	2	3
		UNIT-IV			
8.	a)	Derive the expression for the H due to infinite length of			
	,	conductor using Biot savart Law	6M	2	1
	b)	State and derive any one application of Amperes circuital			
		Law.	6M	2	2
		OR			
9.	a)	Derive the Maxwell equation from the Faraday's Law.	6M	2	2
	b)	Write the difference between Magnetic scalar and Vector			
		potentials.	6M	2	1
		UNIT–V			
10.	a)	Derive Pointing theorem and state its significance.	5M	3	1
	b)	Write a short notes on			
		i) plane waves in lossless dielectrics			
		ii) plane waves in free space			
		iii) Plane waves in good Conductors			
		iv) Wave propagation in Lossy Dielectrics	7M	3	2
		OR			
11.		Derive and explain the reflection coefficient for perfect			
		Dielectric at normal Incidence.	12M	3	2
		*** End ***			

Hall 7	Ficke	et Number :				-						
Code				R-20								
		. Il Semester Regular & Supplementary Examinatic	ons Mav	/June :	2024							
		Linear IC Applications	, ,		-							
		(Electronics and Communication Engineering										
Max.	Ma	rks: 70	Ti	ime: 3 l	Hours	5						
Note:	Note: 1. Question Paper consists of two parts (Part-A and Part-B)											
	2. Ir	n Part-A, each question carries Two marks . Inswer ALL the questions in Part-A and Part-B										
PART-A												
(Compulsory question)												
		ALL the following short answer questions ($5 \times 2 = 10M$)				BL						
,	•	^r the integrated circuits the op-amp inverting circuit			CO1 CO2	L4 L1						
		applications of comparator			CO2	L1						
-	ine l				CO4	L1						
,		e the advantage of successive approximation method PART-B			205	L1						
Ans	wer	five questions by choosing one question from each unit	(5 x 12 =	60 Mar	ks)							
			Marks	CO	, BL							
		UNIT-I										
2.	a)	List the advantages and disadvantages of ICs	4M	CO1	L1							
	b)	Explain different ideal op amp characteristics	8M	CO1	L2							
		OR										
3.	a)	Discuss open loop and closed loop circuits	4M	CO1	L2							
	b)	Explain the DC characteristics of op-amp UNIT-II	8M	CO1	L2							
4.	a)	Design summing amplifier with 3 inputs	6M	CO2	L6							
	⊆, b)	Illustrate the op-amp used as differentiator circuit	6M	CO2	_0 L4							
	-,	OR	-									
5.		Analyze V-I and I-V converter using op-amp	12M	CO2	L4							
		UNIT–III										
6.	a)	Demonstrate comparator circuit	8M	CO3	L3							
	b)	Discuss different states in multivibrators	4M	CO3	L2							
-	、	OR	014	000								
7.	a) h)	Describe triangular wave form generator	8M	CO3	L2							
	b)	Show the simple rectifier circuit using op-amp	4M	CO3	L3							
8.	a)	Draw and explain internal structural diagram of 555 timer	8M	CO4	L2							
0.	b)	List different application of 555 timer	4M	CO4	L1							
	,	OR										
9.	a)	Describe the principle of PLL	4M	CO4	L2							
	b)	Demonstrate frequency multiplication circuit using PLL	8M	CO4	L3							
		UNIT–V										
10.	a)	List the advantages of R-2R ladder network	4M	CO5	L1							
	b)	Explain binary weighted resistor DAC	8M	CO5	L2							
		OR		- -								
11.		With necessary diagram explain dual slope ADC ***END***	12M	CO5	L2							

	Hall Ticket Number :														
	Code: 20AC42T												R-20		
	II B.Tech. II Semester Regular & Supplementary Examinations May/June 2024														
		nerica	l Me	thoo	ds a	nd	Ran	do	n V						
	Max. Marks: 70		(Cor	nmo	on to	EEE	anc	a FC	E)			Ti	me: 3 Ho	ours	

	 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 														
<u>PART-A</u> (Compulsory question)															
1. A i	nswer ALL the follo	wing s	hort	ans	wer	que	estic	ons	(5)	< 2 =	= 10N	I)		СО	BL
a) V	/rite Regula falsi me	ethod fo	ormu	la.										CO1	L5
b) E	valuate ∫ e ^x dx, by	/ Simps	son's	½ r	ule,	tak	ing	n=6							
	0													CO2	L5
	/rite the Properties											-		CO3	L6
								CO4	L1						
e) A fair coin is tossed six times. Find the probability of getting four heads. CO5 L1 PART-B									L1						
Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks)															
													Marks	CO	BL
2	a) Determine the ro	not of x	× ص×	2 hv		IT-I		fals	enc	nsitio	n		6M	001	10
-	 Applying Newto 			-					-			the		COT	L3
-	following table.	no ba			norp			· · · · ·	(.	.00)	nom				
		x 1	.1	1.2	2	1.3	3	1.	4						
	f(x) 7.8	331	8.72		9.62)R	27	10.7	'44				6M	CO1	L3
3. a	a) Find a real root	of equa	tion	x ³ -	x-1	1=	0by	bis	ectio	on m	netho	d.	6M	CO1	L1
l	b) Compute the v		ofy,	wh	en	x=3	3 by	/ U	sing	La	gran	ge's			
	interpolation form		· ·	>	1	1	2								
		X V	-2		·1 2	1 0	2						6M	CO1	L3
					UNI	T–II									
4. a	/			leriv	ative	es c	of th	e fu	Incti	on t	abula	ated			
	below at the point				1 6		1 0	,	2	0	2	2			
	x 1.0 1. y 2.7183 3.32		1.4 0552		1.6 953	0 6	1.8 .049		2. 7.38		2.2 9.02		6M	CO2	L1
I	b) Evaluate $\int e^{-x^2} c$	lx using	l Sim	psoi	n's r	ule	taki	ng h	n = 0	.25.			~		
	Õ												бM	CO2	L5

Code: 20AC42T

OR

5. Obtain y(0.02), y(0.04) for $y' = y + x^2$, y(0) = 1Using modified Euler's method.

12M CO2 L3

		12101	002	LJ								
	UNIT–III											
6.	Calculate the mean, median and mode for the following:											
	Mid Value 15 20 25 30 35 40 45 50 55											
	Frequency 2 22 19 14 3 4 6 1 1	12M	CO3	L3								
	OR											
7.	Find the rank correlation coefficient for the following data											
	x 68 64 75 50 64 80 75 40 55 64											
	y 62 58 68 45 81 60 68 48 50 70	12M	CO3	L1								
	UNIT–IV											
8. a)	Two marbles are drawn in succession from a box containing											
	10 red, 30 white, 20 blue and 15 orange marbles, with											
	replacement being made after each draw. Find the probability											
	that (i) Both are white (ii) First is red and second is white.	6M	CO4	L1								
b)	In a bolt factory machines A, B, C manufacture 20%, 30% and											
-	50% of the total of their output 6%, 3% and 2% are defective.											
	A bolt is drawn at random and found to be defective. Find the											
	probabilities that it is manufactured from (i) Machine A											
	(ii) Machine B (iii) Machine C.	6M	CO4	L1								
	OR											
9.	The frequency function of a continuous random variable X is											
	given by $f(x) = c x(2-x), 0 \le x \le 2$. Find the value of c, mean											
	and variance of X.	12M	CO4	L5								
	UNIT-V											
10, a)	20% of items produced from a factory are defective. Find the											
101 0)	probability that in a sample of 5 chosen at random (i) none is											
	defective (ii) one is defective (iii) $p(1 < x < 4)$	6M	CO5	11								
b)	The average number of phone calls/ minute coming into a	OW	005									
0)	switch board between 2 pm and 4 pm is 2.5. Determine the											
	probability that during one particular minute there will be (i) 4 or											
	fewer (ii) more than 6 calls.	6M	CO5	11								
	OR	0101	005	L I								
11.	The marks obtained in mathematics by 1000 students is											
	normally distributed with mean 78% and standard deviation											
	11%. Determine (i) How many students got marks above 90%											
	(ii) What was the highest mark obtained by the lowest 10% of											
	the students (iii) Within what limits did the middle of 90% of the											
	students lie.	12M	CO5	L1								

	Hall ⁻	Ticket Number :														7
(Code	e: 20A444T												R-20)	
	II B.T	ech. II Semeste											/ay/.	June	2024	
				ance				-			-					
	Max.	Marks: 70	eciro	nics ar	ia C	omr	numi	cano		igin	een	ig)	Tir	ne: 3	Hours	S
ז	Note	1. Question Pape	rcons	vists of	wor		**** (P ar		and I	Part_	R)					
1		2. In Part-A, each 3. Answer ALL	h ques	stion car	ries	Two	mar	·ks.		ai t-	(D)					
	<u>PART-A</u> (Compulsory question)															
1.	Ans	swer ALL the f	ollov		-		• -			ion	s (5	5 X 2	= 10	M)	СО	BL
		w many transi		•				-			•			,	1	L1
		nat is a Data o													2	L1
		entify the role a	•		anc	e of	ent	ity o	decl	arat	ion	in be	havi	oral		
		sign.		U											3	L2
d) Wł	nat is a Barrel	shift	regist	er?										4	L1
е) Dif	ferentiate betw	ween	n sync	hror	nous	s an	d a	syn	chro	onou	ıs se	quer	ntial		
	cir	cuits.													5	L2
	A			- k		_	<u> RT-В</u>			1			40 0	••••••••••••••••••••••••••••••••••••••		
	Ans	wer five question	ns by	cnoosi	ng o	ne q	uesti	on t	rom	eacr	unn	(rks) CO	BL
						UN	IT–I							marite	00	DL
2	2. a)	Explain abou	ut CM	1OS d'	ynar	_		trica	al be	ehav	/iou	r.		6M	1	L2
	b)	Discuss abo	ut CN	NOS/T	TL i	ntei	faci	ng.						6M	1	L2
	·					(DR	•								
3	s. a)	Tabulate the	diffe	rence	s be	twe	en v	vario	ous	logi	c far	nilies	5.	6M	1	L2
	b)	With the he	elp o	fan	eat	circ	cuit	dia	grar	n, (expl	ain t	the			
	-	2-input LS-T	TL N	AND g	gate				-		-			6M	1	L2
						UN	IT–I									
4	. a)	Evaluate the	e role	e of v	ario	us	func	tion	is a	nd	pro	cedur	res			
		available in \	/HDL											6M	2	L5
	b)	Briefly discus	ss ab	out St	ruct	ural	des	sign	ele	mer	nts.			6M	2	L2
						C	DR									
5	i. a)	Write about t	he D	ata ty	pes	in V	ΉD	L.						6M	2	L2
	b)	Design a F VHDL.	ull a	ldder	usir	ng d	com	pon	ent	de	clara	ation	in	6M	2	L6

		_		
U	Ν	П	_	
-		••		

6	a)	Distinguish between variable and Signal assignment			
0.	ч)	statements in VHDL.	6M	3	L4
	b)	Design 3 to 8 decoder using case statement in VHDL.	6M	3	L6
		OR			
7.	a)	Distinguish between concurrent and sequential signal assignment statements in VHDL.	6M	3	L4
	b)	Explain about the behavioral flow model with an example.	6M	3	L2
		UNIT-IV			
8.	a)	Design binary to Gray code converter using VHDL.	6M	4	L6
	b)	Explain about barrel shifter with neat diagram?	6M	4	L2
		OR			
9.	a)	Design 8X1 Mux using 4x1 Mux.	6M	4	L6
	b)	Explain about 3-bit Ripple carry adder with neat sketches.	6M	4	L2
		UNIT–V			
10.	a)	What is Counter? Design a Counter using VHDL.	6M	5	L6
	b)	Analyze the design and implementation of a synchronous counter using VHDL.	6M	5	L4
		OR			
11.	a)	Discuss about Synchronous design methodology?	6M	5	L2
	b)	Describe the T Flip-Flop with its logic diagram. *** End ***	6M	5	L2

	Hall Ticket Number :		
C	R-2	20	
	II B.Tech. II Semester Regular & Supplementary Examinations May / June Communication Systems (Electronics and Communication Engineering)	2024	
N		3 Hours	
N	 Iote: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 		
	<u>PART-A</u> (Compulsory question)		
1. Ai	nswer ALL the following short answer questions ($5 \times 2 = 10M$)	СО	BL
	What is the advantages of SSB-SC modulation over AM?	CO1	L1
,	Differentiate between phase modulation and frequency modulation.	CO2	L2
	What is time division multiplexing?	CO3	L1
-	What is quantization?	CO4	L1
	Write the advantages of FSK.	CO5	L1
	$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Mark	(22	
	Mark		BL
	UNIT-I	.5 00	
2.	Show that any scheme that can demodulate DSB-SC can		
	also demodulate AM. Its converse also true? 12	M CO1	L4
	OR		
3.	Suppose nor in ar (Fixices are a valiable for which the output current inerial influt voltage v_i are related by $i_0 = av_i + b v_i^2$		
	where a and b are constant. Explain how these devices may		
		M CO1	L4
4.	An angle I modulate $d = \begin{bmatrix} UNIT - II \\ U aw m \\ m \\ w'h NIT - I ar freque icy \\ ac = \begin{bmatrix} 2 & 7 \\ 2 & 7 \\ X & 10 \end{bmatrix}$		
	$s(t) = 10 \cos\left(\omega_c + 0.1 \sin 200 \vartheta \pi t\right)$		
	 (i) Find the power of the modulated signal (ii) Find the frequency deviation 		
	(ii) Find the frequency deviation (iii) Find the phase deviation 121	M CO2	IA
	OR	002	L4

5.	a)	Justify the statement 'FM has infinite bands'. Calculate the bandwidth of an FM signal generated to have a deviation of 75KHz by a message signal of 9 KHz. What is the modulation index of the FM wave? UNIT-III Explain with diagram how to obtain PAM signals for baseband transmission for a single information channel,	12M	CO2	L5
		carrying voice frequencies upto 3.3kHz using a sampling rate of 8 kHz. Determine the bandwidth required.	6M	CO3	L2
	b)	Compare Time Division Multiplexing and Frequency Division Multiplexing.	6M	CO3	L2
		OR			
7.	a)	What is pulse width modulation? Write its applications.			
	•	Define duty cycle.	6M	CO3	L1
	b)	Compare PAM, PPM and PWM.	6M	CO3	L2
	,	UNIT-IV			
8.	a)	Briefly explain PCM system suitable for transmission of			
	,	speech.	6M	CO4	L2
	b)	Compare digital and analog communication system.		CO4	
	,	OR			
9	a)	Establish a relation between signal to noise ratio and			
0.	ω,	transmission bandwidth in a PCM system.	6M	CO4	L3
	h)	Explain adaptive delta modulator with reference to a delta			
	2)	modulator.	6M	CO4	L2
		UNIT–V			
10.	a)	Discuss the means of generating a DPSK signal.	6M	CO5	L1
	b)	Establish a comparative study between digital modulation			
	,	techniques Phase Shift Keying and Frequency shift Keying	6M	CO5	L3
		OR			
11.		Explain BPSK transmitter and receiver with the help of block diagram, waveforms and phasor diagram.	12M	CO5	L2