\square

Code: 20A443T

|| B.Tech. II Semester Regular \& Supplementary Examinations July 2023

Electromagnetic Theory

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) A point is located at $\mathrm{P}(-2,4,-1)$. Express it in cylindrical coordinate system. CO1
b) State Gauss's law.
c) Illustrate the expressions for Continuity equation and Relaxation time.

CO3 L4
d) Compare magnetic scalar and vector potentials.

CO4 L5
e) Discuss pointing vector.

CO5 L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. a) Elalu the the divergence anc iurl of the following vectors.
i) ${ }^{\prime} \boldsymbol{A}=\bar{\epsilon}_{z^{2}}{ }^{2} \cos \varnothing \boldsymbol{a}_{\rho}+z \sin ^{2} \emptyset_{\boldsymbol{a}^{z}}^{\prime}$ at (5, $\left.\Pi / 2,1\right)$
ii) ${ }^{4}{ }^{\boldsymbol{B}}={ }^{+} r \boldsymbol{a}_{r}+r \cos 2 \theta \boldsymbol{a}_{\varnothing}$ at $\left(1,{ }^{\boldsymbol{a}}{ }^{\boldsymbol{a}}{ }^{2} / 2, \pi / 6\right)$

8M CO1 L5

id the gradi mont of ti given scal rs.
i) $\left.v=4 x z^{2}+3 y z . ~ i i\right) ~ w=r^{2} \cos \theta \cos \emptyset . \quad 4 \mathrm{M}$ CO1 L3
3. a) Express $\mathbf{A}=x y^{2} z \mathbf{a}_{x}+x^{2} y z \mathbf{a}_{y}+x y z^{2} \mathbf{a}_{2}$ in cylindrical coordinates.

6M CO1 L1
b) Express the points $P(2,5 \pi / 6,3), Q(2,5 \pi / 6, \pi / 2)$ in the rectangular co-ordinate system

6M CO1 L1
UNIT-II
4. a) State and explain Coulomb's law.
$6 \mathrm{M} \mathrm{CO2}$ L2
b) Derive the expression for the energy stored in electrostatic fields.

6M CO2 L6

OR

5. a) Two-point charges $-4 \mu \mathrm{C}$ and $5 \mu \mathrm{C}$ are located at $(2,-1,3)$ and $(0,4,-2)$ respectively. Find the potential at $(1,0,1)$ assuming zero potential at infinity.
b) Explain any one of the applications of Gauss's law? 6 M CO 2 L2
UNIT-III
6. a) The current density $\mathbf{J}=\frac{100}{\rho^{2}} \boldsymbol{a}_{\rho} A / \mathrm{m}^{2}$. Find the total currentpassing through surface defined by$\rho=2,0<z<1,0<\emptyset<2 \pi$.
$6 \mathrm{M} \mathrm{CO3}$ L3
b) Derive the expression for continuity of current equation. $6 \mathrm{M} \mathrm{CO3}$ L6
OR7. a) Determine the capacitance for unit length of coaxialconductor with outer radius 2.25 cm and inner radius 0.75 cm ,if the dielectric with $\varepsilon_{r}=2.7$.
b) Discuss isotropic, homogeneous materials? Also discuss dielectric constant?
6M CO3 L6
$6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$

UNIT-IV

8. a) Develop the relationship between magnetic vector potential and magnetic flux density?
b) Outline the Maxwell's equations in differential and integral forms with necessary statements for static EM fields.
6M CO4 L6

OR

9. Elaborate the forces due to magnetic fields?
$12 \mathrm{M} \mathrm{CO4} \mathrm{L2}$

UNIT-V

10. a) When a uniform plane wave is incident normally on an interface between two media, derive the expression for transmission coefficient.
b) Determine the phase velocity of propagation, attenuation constant, phase constant and intrinsic impedance for a forward travelling wave in a large block of copper at 1 MHz $\left(\sigma=5.8 \times 10^{7}, \varepsilon_{r}=\mu_{r}=1\right)$.
6M CO5 L6
6M CO5 L3

OR

11. Derive an expression for characteristic impedance of a transmission line.
12M CO5 L6
*** End ***
\square

Code: 20A441T

|| B.Tech. II Semester Regular \& Supplementary Examinations July 2023

Linear IC Applications

(Electronics and Communication Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)
1.Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) What are the advantages of integrated circuits over discrete circuits? CO1 L4
b) Derive the voltage gain of inverting op-amp. CO L3
c) Discuss about virtual ground concept in op-amp. CO3 L4
d) Draw the pin diagram of 555 timer IC and name the pins. $\mathrm{CO} \quad \mathrm{L6}$
e) Define the accuracy and resolution of the DACs.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) List out the different types of integrated circuits and their package types.

6M CO1 L6
b) An op-amp has a slew rate of $2 \mathrm{~V} / \mu \mathrm{s}$. What is the maximum frequency of an output sinusoid of peak value 5 V at which the distortion sets in due to the slew rate limitation?

6M CO1 L3
OR
3. a) Draw the generalized block diagram for the operational amplifier. Explain each block in detail.

6M CO1 L2
b) Explain the following terms of op-amp.
(i) CMRR
(ii) PSRR
(iii) Output offset voltage
6M CO1 L4

UNIT-II
4. a) Explain open loop and closed loop operations of an opamp.

6M CO2 L1
b) Describe the working of op-amp differentiator circuit. Derive the expression for output voltage.
$6 \mathrm{M} \mathrm{CO2}$ L5
5. a) What is the output voltage of integrator when input voltage of 5 V with 5 ms is applied? 6M CO2 L5
b) With a neat diagram explain about the voltage to current converter in details. $6 \mathrm{M} \mathrm{CO2}$ L2
UNIT-III
6. a) Explain the operation of an astable multivibrator using op- amp and discuss about duty cycle of it. 6M co3 L5

b) Draw the circuit of triangular wave generator and explain its
working.
working. $6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$
OR
7. a) Explain the operation of Schmitt trigger (using op- amp).Generally for what purpose it is preferred? $6 \mathrm{M} \mathrm{CO3} \mathrm{L3}$b) Explain the principle of operation of a precision full waverectifier with waveforms.
UNIT-IV8. a) Explain the functions of each of the pins in 555 timer IC.b) Explain the operation of Monostable multivibrator using 555timer. Derive the expression for quasi stable state timeperiod of the multivibrator.6 M CO L5
OR
9. a) Draw the block diagram for PLL and explain in detail. $6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$b) Explain the application of PLL as a frequency multiplier witha neat diagram.
$6 \mathrm{M} \mathrm{CO4} \mathrm{L6}$
UNIT-V
10. a) In detail explain the operation of binary weighted DAC andmention its limitations.
b) Why is an inverted R-2R ladder network DAC better than R-2R ladder network DAC?
6M CO5 L4

OR

11. a) Which is the fastest ADC? Explain the operation and discuss its merits.
6M CO5 L4
$6 \mathrm{M} \mathrm{CO5} \mathrm{~L} 3$
b) Explain in detail with a neat circuit diagram the operation of 3-bit parallel ADC.
6 M CO5 L4

Code: 20AC42T
II B.Tech. II Semester Regular \& Supplementary Examinations July 2023

Numerical Methods and Random Variables

(Common to EEE and ECE)
Max. Marks: 70
Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$
a) Find the missing value in the following table using forward difference operator.

x	0	1	2	3	4
y	1	3	9	-	81

b) Consider the differential equation $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$. Explain Euler's method for finding the approximate solution $y(x)$.

CO2 L1
c) Find the mean and median of the data set. 15, 13, 9, 9, 7, 1, 11, 10, 13, 1, 13.
d) Write a short note on Discrete Probability distribution function.

CO4 L1
e) Find the mean of the Poisson distribution.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=\mathbf{6 0}$ Marks)

UNIT-I

2. a) Apply Regula Falsi method to find the real root of the equation
$3 x-\cos x-1=0$.
$6 \mathrm{M} \mathrm{CO1}$
b) Apply Newton's Forward interpolation formula to find number of students who obtained marks between 40 and 45 from the following data.

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Number of students	31	42	51	35	31
OR					

3. a) Apply Newton-Raphson's method to find the real root of the equation $x e^{x}=2$ by taking suitable initial approximation.
b) Apply Lagrange's interpolation formula to find $f(x)$ from the data. Hence, find $f(3.5)$.

x	0	2	3	
$f(x)$	0	8	27	
UNIT-II				

6M CO1 L4
4. Apply Runge-Kutta method of order 4 to find the approximate value of y for $\mathrm{x}=0.2$, in step of $h=0.1$ if $\frac{d y}{d x}=x+y^{2}, y=1$ when $x=0$.

OR

5. a) From the following table, find the values of $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=2.02$.

x	1.96	1.98	2	2.02	2.04
$f(x)$	0.78	0.77	0.76	0.75	0.74

b) A river is 60 feet wide. The depth d (in feet) of the river at a distance x from one bank is given by the following table.

Distance (x)	0	10	20	30	40	50	60
Depth (d)	0	3	7	10	12	8	4

Find approximately the area of the cross-section of the river $\int_{0}^{60} y d x$ using Simpson's $1 / 3^{\text {rd }}$ rule.

UNIT-III

6. a) Calculate Mean, Median from the following grouped data:

Class	$2-4$	$4-6$	$6-8$	$8-10$
Frequency (f)	3	4	2	1

6 M CO3 L5
b) Find the coefficient of correlation between industrial production and export using following data.

Production(in crore tones)	55	56	58	59	60	60
Exports (in crore tones)	35	38	38	39	44	43

OR
7. The following marks have been obtained by ten students in Physics (x) and Mathematics (y). Compute the rank correlation coefficient.

x	68	64	75	50	64	80	75	40	55	64
y	62	58	68	45	81	60	68	48	50	70

UNIT-IV
8. An urn I contains 3 white and 4 red balls and an urn II contains 5 white and 6 red balls. One ball is drawn at random from one of the urns and is found to be white. Find the probability that it was drawn from urn I.

OR

9. Define Continuous Probability distribution function. The frequency function of a continuous random variable is given by $f(x)=C x(2-x)$ for $0 \leq x \leq 2$.
Find the value of C, mean and variance of x.
12M CO3
$12 \mathrm{M} \mathrm{CO4} \mathrm{L3}$
$12 \mathrm{M} \mathrm{CO4} \mathrm{L3}$

UNIT-V

10. Four coins were tossed 200 times. The number of tosses showing 0, 1, 2, 3 and 4 heads was found as under.

No. of Heads (x)	0	1	2	3	4
No. of Tosses (f)	15	35	90	40	20

Fit a Binomial distribution to above observed results and compare the theoretical frequencies with actual ones.

OR

11. Let X be a continuous random variable, μ is the mean and σ is the standard deviation of the normal distribution. In a normal distribution, 31\% of the items are under 45 and 8% are over 64 . Find the mean and standard deviation of the distribution.

12M CO5

Code: 20A444T

II B.Tech. II Semester Regular \& Supplementary Examinations July 2023

Advanced Digital Design Concepts

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \mathrm{BL}$
a) What is the main advantage of CMOS logic compared to bipolar logic? $1 \quad$ L1
b) How are data types used in HDL? 2 L3
c) Differentiate between concurrent and sequential signal assignment statements 3 L2
d) Give an example of a three-state device and explain its function. $4 \quad$ L3
e) Differentiate between synchronous and asynchronous sequential circuits. 5 L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. a) Design a CMOS transistor circuit for 2-input NAND gate and explain its operation

6M
b) Describe the steady-state electrical behavior of CMOS logic circuits. Explain why CMOS circuits consume negligible power when in the steady state

OR

3. a) Design a CMOS logic circuit that can operate as NOR gate. Include the schematic diagram, truth table, and explain its
operation.

6M 1 L6

6M 1 L4

UNIT-II

4. a) Describe the design flow for designing a digital system using HDL. Explain each sage in the design flow.

6M 2 L2
b) Create a structural design using HDL for a 4-bit adder circuit. $6 \mathrm{CM} \quad 2$ L6

OR
5. a) Evaluate the advantages and disadvantages of using HDL for digital circuit design. Discuss any limitations or challenges faced in the design process.
b) Evaluate the role of functions and procedures in HDL.

6M 2 L5
UNIT-III
6. Design a behavioral model of a simple digital system using HDL.Include entity declaration, architecture body, processstatements, variable and signal assignment statements, waitstatements, if statements, case statements, null statements, loopstatements, and assertion statements.12M 3 L6
OR
7. a) Evaluate the functionality and usage of the if statement and the case statement in behavioral design. 6 M 3 L 5
b) Analyze the role and significance of the delay models, namelythe inertial delay model and the transport delay model, inbehavioral design.
6M 3 L4
UNIT-IV
8. a) Design a 4 X 1 Multiplexer using VHDL 6M 4 L6
b) Design BCD to Exess-3 code converter using VHDL 6M 4 L6
OR
9. a) Design a full subtractor using VHDL. 6M 4 L6
b) Design 3:8 Decoder using VHDL 6M 4 L6
UNIT-V
10. a) Design JK-Flip Flop using SR-Flip Flop 8M 5 L6
b) Explain how VHDL is used to model and describe the behavior of counters in digital circuits. $4 \mathrm{M} \quad \mathrm{L} 2$
OR
11. Analyze the potential impediments to synchronous design. 12M 5 L4
\square

Code: 20A442T

|| B.Tech. II Semester Regular \& Supplementary Examinations July 2023

Communication Systems

(Electronics and Communication Engineering)

Max. Marks: 70

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions (5 X $2=10 \mathrm{M}$) CO BL
a) Define modulation index of AM. CO1 L1
b) What is frequency deviation? CO2 L2
c) Define Nyquist rate. CO3 L1
d) Compare uniform and non-uniform quantization. CO4 L4
e) Write the expression for probability of error in BPSK system. CO5 L3

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) With a neat schematic diagram, explain basic communication system.
b) What is the principle involved in Amplitude Modulation? Derive the expression for AM wave and draw its spectrum.

OR

3. a) Sketch the circuit diagram of balanced modulator and explain how DSB-SC waveform is generated.
b) A modulating signal $20 \sin \left(2 \times 10^{3} t\right)$ is used to modulate a carrier signal of $40 \sin \left(2 \times 10^{4} t\right)$. Determine the modulation index, bandwidth of the modulated wave, frequency of side band components and their amplitudes.

UNIT-II

4. a) Explain the indirect method of generation of FM signal using relevant diagrams.
b) Construct a balanced frequency discriminator to demodulate a FM signal and explain.

6M CO1 L2
6M CO1 L2
$6 \mathrm{M} \mathrm{CO1} \mathrm{L3}$

6M CO1 L5
$6 \mathrm{M} \mathrm{CO2} \mathrm{~L} 2$

6M CO2 L6
5. a) Compare AM and FM.
b) The frequency deviation in an FM broadcast system is 75 KHz . If the modulating signal is a single-tone sinusoidal of 8 KHz , determine the bandwidth of FM signal. What will be the bandwidth when modulating signal amplitude is doubled?

6M CO2 L5

UNIT-III

6. a) Illustrate PAM, PWM and PPM waveforms with reference to same clock pulse with necessary diagrams.
b) Explain the generation of PWM signals.

OR

7. a) With the aid of block diagram, briefly explain Time division multiplexing.
b) Analyze how Aliasing affects signal transmission and how it is eliminated.
$6 \mathrm{M} \mathrm{CO3} \mathrm{L4}$

UNIT-IV

8. a) Draw the block diagram of a PCM system and explain each block in detail.
b) Compare Delta modulation and PCM techniques in terms of bandwidth and signal to noise ratio.

OR

9. a) Illustrate the working of adaptive delta modulation system with a neat block diagram.
b) A PCM system uses a uniform quantizer followed by a 7 bit encoder. The system bit rate is $50 \mathrm{Mbits} / \mathrm{sec}$. Calculate sampling frequency and transmission bandwidth.

6M CO4 L5

UNIT-V

10. a) Describe the generation and detection of Amplitude shift Keying signal.
b) Draw and explain the operation of transmitter and receiver of a coherent FSK.
$6 \mathrm{M} \mathrm{CO5} \mathrm{~L} 2$

6M CO5 L2

OR

11. a) Compare ASK, FSK and PSK with respect to bandwidth requirements, power requirements, immunity to channel impairments and equipment complexity.
b) Determine the DPSK transmitter output $b(t)$ for bit stream $\mathrm{d}(\mathrm{t})=001010011010$. Derive the expression for bandwidth requirement of DPSK signal.

6M CO5 L4

6M CO5 L6
6M CO4 L2

