					1		1			1					
Н	all Ticket Number :												^		
Co	ode: 20A443T											R-2			
	II B.Tech. II Semeste									natio	ons	July 20	23		
	/Ele etr	Elec		-				-							
M	ax. Marks: 70	onics c	ina C	omn	nuni	can		ngin	een	ig)		Time: 3	Нс	ours	
Ът		•	• ,		****		1 7		D)						
No	ote: 1. Question Paper con 2. In Part-A, each que		-				and I	'art-	B)						
	3. Answer ALL the q						t-B								
					RT-A	-									
			(Comj		• -			<i>.</i> –		_			_	_	
	wer ALL the followir	-			-			•							BL
-	pint is located at P (-2	, 4, -1).	Ехрі	ress	it in	cyli	ndrie	cal c	oor	dinat	te s	ystem.			L1
,	te Gauss's law.													-	L1
-	strate the expressions			-	-			d Re	elax	atior	n tin	ne.			L4
d) Con	npare magnetic scala	ar and y	vecto	r po	tent	ials.									L5
e) Disc	cuss pointing vector.												C) 5	L2
<u>PART-B</u> Answer <i>five</i> questions by choosing one question from each unit (5 x 12 = 60 Marks)															
,	Answer <i>inve</i> questions b	y choos	sing o	ne q	uest	ION T	rom	eacr	unn	[[]]	x 12	Mar		, CO	BL
				UN	IIT–	-1						Wa	NO	00	
2. a)	Evaluate the diverg	ence	and	_			ollov	ving	vec	tors	5.				
,	$i) \mathbf{A} = \mathbf{b} z^2 \cos \phi \mathbf{a}_{\rho} - \mathbf{b} z^2 \cos \phi \mathbf{b} z^2 \cos \phi \mathbf{b} z^2 - \mathbf{b} z^2 \cos \phi \mathbf{b} z^2 - \mathbf{b} z^2 \sin \phi \mathbf{b} z^2 - \mathbf{b} z^2 - \mathbf{b} z^2 \sin \phi \mathbf{b} z^2 - b$	+ z sin	² Ø '	at	(5,	/2,	1)	U							
	i) ${}^{\prime}4 = {}^{\epsilon}z^{2} \cos \phi \ \boldsymbol{a}_{\rho}$ ii) ${}^{\prime}\mathbf{B} = {}^{\ell}r \boldsymbol{a}_{r} + r \cos 2\theta$	a_{ϕ} at	(1, a	/2,	(6/)	,					8	Μ	CO1	L5
b)	$F_{ij}B = \eta a_r + r \cos 2\theta$	ancat	(1, п	/2, 1	a/6))									
,	id the gradient of $V = 4xz^2 + 3yz$.	ftlig ij)₩	$iv \in n$ = r^2	scal ² cos	rs. S 0 d	¤0S	Ø.					4	Μ	CO1	L3
		,)R										
3. a)	Express $\mathbf{A} = xy^2z$	$a_{2} + 2$	$v^2 v z$	a., +	-xv	z^2 a	- in	CV	lind	rica	l c	0-			
/	ordinates.	x .		y .			4	Ĵ			-		М	CO1	11
b)	Express the point	s P(2	5 /	6	3)	$\Omega(2$	5	/6	12	2) ir	n tk			001	L 1
6)	rectangular co-ordi				<i>.</i> ,	Q(2	, 0	70,	12	-, "			М	CO1	11
	gener er er er er		,		IT–	11						-			
4. a)	State and explain C	Coulor	ıb's l									6	Μ	CO2	L2
b)					av s	store	ed ir	n ele	ectro	osta	tic				
,	fields.				0,							6	Μ	CO2	L6
				С	R										
5. a)	Two-point charges	-4µC a	and 5	δµC	are	loca	ated	at	(2, -	1, 3) ar	nd			
,	(0, 4, -2) respective	-		-					•						
	zero potential at inf	-		•			,	·				-	Μ	CO2	L3
												Da	70 1	of 7	

b)	Explain any one of the applications of Gauss's law?	6M	CO2	L2
6. a)	The current density $J = \frac{100}{\rho^2} \alpha_{\rho} A/m^2$. Find the total current			
	passing through surface defined by			
	$\rho = 2, 0 < z < 1, 0 < \emptyset < 2\pi$	6M	CO3	L3
b)	Derive the expression for continuity of current equation.		CO3	
	OR			
7. a)	Determine the capacitance for unit length of coaxial conductor with outer radius 2.25cm and inner radius 0.75cm, if the dielectric with -2.7	6M		
b)	if the dielectric with $_r = 2.7$. Discuss isotropic, homogeneous materials? Also discuss	OIVI	CO3	L6
b)	dielectric constant?	6M	CO3	L2
	UNIT–IV			
8. a)	Develop the relationship between magnetic vector potential and magnetic flux density?	6M	CO4	L6
b)	Outline the Maxwell's equations in differential and integral			
	forms with necessary statements for static EM fields.	6M	CO4	L4
0	OR Flaborate the forece due to recreatio fields?	4014		
9.	Elaborate the forces due to magnetic fields?	12IVI	CO4	L2
10. a)	When a uniform plane wave is incident normally on an interface between two media, derive the expression for transmission coefficient.	6M	CO5	L6
b)	Determine the phase velocity of propagation, attenuation constant, phase constant and intrinsic impedance for a forward travelling wave in a large block of copper at $1MHz$	<u>c</u> M		
	$(=5.8 \times 10^7, r = \mu_r = 1).$	DIVI	CO5	L3
11.	Derive an expression for characteristic impedance of a			
	transmission line.	12M	CO5	L6

	-											-				
	На	III Ticket Number :														
	Co	de: 20A441T												R-20		
		II B.Tech. II Seme	ester Re	gulo	ar &	Sup	plei	nen	itary	Exc	amir	natior	ns Jul	y 2023	3	
				ine												
	Ма	(E 1x. Marks: 70	lectroni	cs ar	nd C	omr	nuni	catio	on Ei	ngin	eeri	ng)	Tin	ne:3+	lours	

	Not	e: 1. Question Pape 2. In Part-A, eacl			-				and P	Part-	B)					
		3. Answer ALL	-						t-B							
						PAF	RT-A	-								
	(Compulsory question)															
		wer ALL the foll	-				-							•	CO	BL
		hat are the advar	-		-				ove	r dis	scre	te cir	cuits	?	CO1	L4
b)	De	rive the voltage of	gain of	inve	rting	op-	amp	Э.							CO2	L3
c)	Dis	cuss about virtua	al grou	nd co	once	ept ii	n op	-am	р.						CO3	L4
d)	Dra	aw the pin diagra	m of 5	55 tir	mer	IC a	ind i	nam	e th	e pi	ns.				CO4	L6
e)	De	fine the accuracy	y and re	esolu	ution				S.						CO5	L1
			na hu ak				RT-B			k			40 0			
	A	nswer <i>five</i> question	ns by ch	0051	ng o	ne qu	uesti	on n	ome	each	unn	() X		Marks	CO	BL
						UN	IT–I							marito	00	22
2.	a)	List out the diffe	erent ty	vpes	of i	nteg	grate	ed c	ircui	ts a	ind	their				
		package types.												6M	CO1	L6
	b)	An op-amp has	s a slev	v rat	e of	2V.	/µs.	Wh	at is	s the	e m	axim	um			
		frequency of a	•				•					at wh	ich			
		the distortion se	ets in d	ue t	o th			ate	limit	tatic	n?			6M	CO1	L3
						_	R									
3.	a)	U					-		or t	he	ope	eratio	nal			
		amplifier. Expla												6IVI	CO1	L2
	D)	Explain the follo	U			•	•									
		(i) CMRR (i	I) PSRI	≺ (II	I) U				VOIt	age	;			61VI	CO1	L4
Л	a)	Explain open	اممم م	nd c					orati	one	of	20.0	20-			
4.	aj	amp.	ioop ai	iu c	1036		oop	op	Siali	013			Jh-	6M	CO2	11
	b)	Describe the w	orkina	ofo	n-ar	nn c	diff≏	rent	iato	r cir	cuit	Der	ive	0.01	002	<u> </u>
	~)	the expression	•		•	•					Juit	. 201		6M	CO2	L5
		•	-	•	_	-	R									_•

5.	a)	What is the output voltage of integrator when input voltage of 5V with 5ms is applied?	6M	CO2	L5
	b)	With a neat diagram explain about the voltage to current			
		converter in details.	6M	CO2	L2
e	\sim	UNIT-III Evolution the experiment of an estable multivibrator using on			
0.	a)	Explain the operation of an astable multivibrator using op- amp and discuss about duty cycle of it.	6M	CO3	L5
	b)	Draw the circuit of triangular wave generator and explain its			
		working.	6M	CO3	L2
		OR			
7.	a)	Explain the operation of Schmitt trigger (using op- amp).Generally for what purpose it is preferred?	6M	CO3	10
	b)	Explain the principle of operation of a precision full wave	OIVI	003	L3
	0)	rectifier with waveforms.	6M	CO3	14
		UNIT-IV	••••	000	- 1
8.	a)	Explain the functions of each of the pins in 555 timer IC.	6M	CO4	L1
	b)	Explain the operation of Monostable multivibrator using 555			
		timer. Derive the expression for quasi stable state time			
		period of the multivibrator.	6M	CO4	L5
		OR			
9.	a)	Draw the block diagram for PLL and explain in detail.	6M	CO4	L2
	b)	Explain the application of PLL as a frequency multiplier with			
		a neat diagram.	6M	CO4	L6
10	、				
10.	a)	In detail explain the operation of binary weighted DAC and mention its limitations.	6M	CO5	1.4
	b)	Why is an inverted R-2R ladder network DAC better than	OIVI	005	L4
	D)	R-2R ladder network DAC?	6M	CO5	L4
		OR			
11.	a)	Which is the fastest ADC? Explain the operation and discuss its merits.	6M	CO5	13
	h)	Explain in detail with a neat circuit diagram the operation of	Givi	005	LJ
	5)	3-bit parallel ADC.	6M	CO5	L4
		*** End ***			

Hall Ticket Number :			
Code: 20AC42T	R-20		
Il B.Tech. II Semester Regular & Supplementary Examinations	July 2023	3	
Numerical Methods and Random Variables	,		
(Common to EEE and ECE)	T 0.11		
Max. Marks: 70 ********	Time: 3 H	ours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two marks .			
3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$		со	BL
a) Find the missing value in the following table using forward difference operator.		00	DL
x 0 1 2 3 4			
y 1 3 9 - 81		CO1	L1
b) Consider the differential equation $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$. Explain Euler's method	l for finding		
			1.4
the approximate solution $y(x)$.		CO2	
c) Find the mean and median of the data set. 15, 13, 9, 9, 7, 1, 11, 10, 13, 1, 13.d) Write a short note on Discrete Probability distribution function.		CO3 CO4	
e) Find the mean of the Poisson distribution.		CO4	
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x 12	2 = 60 Mark	s)	
	Marks	CO	BL
2. a) Apply Regula Falsi method to find the real root of the equation $3x - \cos x - 1 = 0$.	6M	CO1	L3
b) Apply Newton's Forward interpolation formula to find number of studen		COT	LJ
who obtained marks between 40 and 45 from the following data.	13		
Marks 30-40 40-50 50-60 60-70 70-80			
Marks 30-40 40-50 50-60 60-70 70-80 Number of students 31 42 51 35 31	6M	CO1	L4
Number of students3142513531OR		CO1	L4
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation	n		
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation.	on 6M		L4 L3
Number of students 31 42 51 35 31 OR 3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation. b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5)	on 6M		
Number of students3142513531OR3. a)Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation.b)Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x 023	on 6M	CO1	L3
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation.b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x x 0 2 3 $f(x)$ 0 8 27	on 6M		
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation.b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x 023f(x)0827UNIT-II	on 6M 6M	CO1	L3
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation. b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x 023 $f(x)$ 0827UNIT-II4. Apply Runge-Kutta method of order 4 to find the approximate value of y formation	on 6M 6M	CO1	L3
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation.b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x 023f(x)0827UNIT-II	on 6M 6M	CO1 CO1	L3 L4
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation. b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x 023 $f(x)$ 0827UNIT-II4. Apply Runge-Kutta method of order 4 to find the approximate value of y for $x = 0.2$, in step of $h=0.1$ if $\frac{dy}{dx} = x + y^2$, $y = 1$ when $x = 0$.OR	on 6M 6M or	CO1 CO1	L3 L4
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation. b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x 023 $f(x)$ 0827UNIT-II4. Apply Runge-Kutta method of order 4 to find the approximate value of y for $x = 0.2$, in step of $h=0.1$ if $\frac{dy}{dx} = x + y^2$, $y = 1$ when $x = 0$.OR	on 6M 6M or	CO1 CO1	L3 L4
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation.b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x x 0 2 3 $f(x)$ 0 8 27 10	on 6M 6M or	CO1 CO1	L3 L4
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation.b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x 02 x 02 $f(x)$ 08 x 08 </td <td>on 6M or 12M</td> <td>CO1 CO1 CO2</td> <td>L3 L4 L4</td>	on 6M or 12M	CO1 CO1 CO2	L3 L4 L4
Number of students3142513531OR3. a) Apply Newton-Raphson's method to find the real root of the equation $xe^x = 2$ by taking suitable initial approximation.b) Apply Lagrange's interpolation formula to find f(x) from the data. Hence, find f(3.5) x x 0 2 3 $f(x)$ 0 8 27 10	on 6M . 6M or 12M 6M	CO1 CO1 CO2	L3 L4

b) A river is 60 feet wide. The depth d (in feet) of the river at a distance x from one bank is given by the following table.

Distance (x)	0	10	20	30	40	50	60
Depth (d)	0	3	7	10	12	8	4

	Find approximately the area of the cross-section of the river $\int_{0}^{60} y dx$ using			
	⁰ Simpson's 1/3 rd rule.	6M	CO2	L4
	UNIT–III			
6. a)	Calculate Mean, Median from the following grouped data:			
	Class 2-4 4-6 6-8 8-10			
	Frequency(<i>f</i>) 3 4 2 1	6M	CO3	L5
b)	Find the coefficient of correlation between industrial production and export using following data.			
	Production(in crore tones) 55 56 58 59 60 60			
	Exports (in crore tones)353838394443	6M	CO3	L5
7.	OR The following marks have been obtained by ten students in Physics (x) and			
7.	Mathematics (y). Compute the rank correlation coefficient.			
	x 68 64 75 50 64 80 75 40 55 64			
	y 62 58 68 45 81 60 68 48 50 70	12M	CO3	L5
	UNIT–IV			
8.	An urn I contains 3 white and 4 red balls and an urn II contains 5 white and			
	6 red balls. One ball is drawn at random from one of the urns and is found to be white. Find the probability that it was drawn from urn I.	12M	CO4	13
	OR	. 2.01	001	20
9.	Define Continuous Probability distribution function. The frequency function			
	of a continuous random variable is given by $f(x) = Cx(2-x)$ for $0 \le x \le 2$.			
	Find the value of C, mean and variance of x.	12M	CO4	L3
	UNIT–V			
10.	Four coins were tossed 200 times. The number of tosses showing 0, 1, 2, 3 and 4 heads was found as under.			
	No. of Heads (x) 0 1 2 3 4			
	No. of Tosses (f) 15 35 90 40 20			
	Fit a Binomial distribution to above observed results and compare the			
	theoretical frequencies with actual ones.	12M	CO5	L6
11.	OR Let X be a continuous random variable, ~ is the mean and † is the standard			
11.	deviation of the normal distribution. In a normal distribution, 31% of the			
	items are under 45 and 8% are over 64. Find the mean and standard			
	deviation of the distribution.	12M	CO5	L6

Hall Ticket Number :		
	-20	
II B.Tech. II Semester Regular & Supplementary Examinations July 2	2023	
Advanced Digital Design Concepts		
(Electronics and Communication Engineering) Max. Marks: 70	: 3 Hours	
*****	. 0 110013	
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks .		
3. Answer ALL the questions in Part-A and Part-B		
PART-A		
(Compulsory question)	0.0	
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$	CC	
a) What is the main advantage of CMOS logic compared to bipolar logic?		1 L1
 b) How are data types used in HDL? c) Differentiate between concurrent and concurring signal assignment statem 		2 L3
 c) Differentiate between concurrent and sequential signal assignment statem d) Cive on example of a three state device and explain its function 		3 L2
 d) Give an example of a three-state device and explain its function. a) Differentiate between exact and explain its function. 		4 L3
e) Differentiate between synchronous and asynchronous sequential circuit PART-B	5. 5	5 L2
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 60$ l	Marks)	
	/larks CC) BL
UNIT–I		
2. a) Design a CMOS transistor circuit for 2-input NAND gate and		
explain its operation	6M	1 L6
b) Describe the steady-state electrical behavior of CMOS logic		
circuits. Explain why CMOS circuits consume negligible power when in the steady state	6M	1 L2
OR	U.M.	
3. a) Design a CMOS logic circuit that can operate as NOR gate.		
Include the schematic diagram, truth table, and explain its		
operation.	6M ·	1 L6
b) Develop a comprehensive comparison of various logic families,		
including CMOS, Bipolar, TTL, and ECL.	6M	1 L4
4. a) Describe the design flow for designing a digital system using		
HDL. Explain each sage in the design flow.	6M ;	2 L2
b) Create a structural design using HDL for a 4-bit adder circuit.		2 L6
OR		
5. a) Evaluate the advantages and disadvantages of using HDL for		
digital circuit design. Discuss any limitations or challenges faced		
in the design process.		2 L5
b) Evaluate the role of functions and procedures in HDL.	6M :	2 L5
	Page 1 of 2	

UNIT–III

6.		Design a behavioral model of a simple digital system using HDL. Include entity declaration, architecture body, process statements, variable and signal assignment statements, wait statements, if statements, case statements, null statements, loop statements, and assertion statements.	12M	3	L6
		OR			
7.	a)	Evaluate the functionality and usage of the if statement and the case statement in behavioral design.	6M	3	L5
	b)	Analyze the role and significance of the delay models, namely			
		the inertial delay model and the transport delay model, in behavioral design.	6M	3	L4
8	a)	Design a 4X1 Multiplexer using VHDL	6M	Л	L6
0.	b)	Design BCD to Exess-3 code converter using VHDL	6M		L6
	0)	OR	OW	4	LO
9.	a)	Design a full subtractor using VHDL.	6M	4	L6
-	b)	Design 3:8 Decoder using VHDL	6M		
	,	UNIT-V			
10.	a)	Design JK-Flip Flop using SR-Flip Flop	8M	5	L6
	b)	Explain how VHDL is used to model and describe the behavior			
	,	of counters in digital circuits.	4M	5	L2
		OR			
11.		Analyze the potential impediments to synchronous design.	12M	5	L4
		*** End ***			

H	all Ticket Number :]				
	ode: 20A442T												R-20		
	II B.Tech. II Seme	ester	Regula	ar &	Sup	pler	ner	ntar	y Exc	amir	natior	ns Ju	ly 2023		
			Comn		-	-			-						
	(El ax. Marks: 70	ectro	nics ar	nd Co	omn	nuni	catio	on E	ngin	eerir	ng)	Tir	ne: 3 H		
1010	ux. Murks. 70				****	****	¢					111	ne. 5 n	0013	
No	te: 1. Question Pape 2. In Part-A, each	n ques	tion car	ries '	Two	mar	ks.		Part-	·B)					
	3. Answer ALL the questions in Part-A and Part-B PART-A														
	(Compulsory question)														
1. An	swer ALL the follow	wing		-		• •		,	(5)	< 2 =	= 10N	I)	C	ю в	L
a) D	efine modulation	inde	x of Al	М.									C	01 L	1
b) V	Vhat is frequency	devia	ation?										C	02 L	2
c) D	efine Nyquist rat	e.											C	03 L	1
d) C	compare uniform	and r	non-un	iforr	n qı	lanti	izati	on.					C	04 L4	4
e) V	Vrite the expressi	on fo	r prob	abilit	ty of	erro	or in	BF	PSK	syst	em.		C	05 L:	3
						RT-B				•		<i>.</i>			
	Answer <i>five</i> questi	ons by	choosi	ng on	ie qu	estio	n fro	m ea	ach u	nit (a	5 x 12	= 60 [Marks)		
													Marks	СО	BL
					UNI		<u> </u>					<i>.</i> .			
2. a)	With a neat sch	iema	tic dia	grar	n, e	xpla	un b	asi	IC CC	mm	unica	ation		004	
b)	system.	vrinci	olo in	volv	od	in	۸m	nliti	udo	Mo	dulat	ion?		CO1	L2
0)	What is the p Derive the expr							•						CO1	12
		00010	111017		OF			i a n		opov	otraini	•	0.01	001	LZ
3. a)	Sketch the circu	uit dia	aaram	of b		-	d m	odı	ilato	r an	d ex	olain			
,	how DSB-SC w		•								• • • · · ·			CO1	L3
b)	A modulating si	ignal	20 sir	า (2	Х	10 ³	t) is	us	ed t	o m	odula	ite a			
,	carrier signal of	40 s	sin (2	X 1	10 ⁴ t)). De	eter	mir	he th	e m	odula	ation			
	index, bandwid	th of	the n	nodu	ulate	ed v	vave	ə, f	requ	ienc	y of	side			
	band componer	nts ar	nd the	ir an	nplit	ude	S.						6M	CO1	L5
				l	JNIT	[—]]									
4. a)	Explain the indi		metho	od of	f ge	nera	atior	n of	FM	l sig	nal u	sing			
	relevant diagrar													CO2	L2
b)	Construct a bal			lnen	су с	disc	rımi	nat	or to	de de	modu	ulate			
	a FM signal and	a exp	iain.			-							ЮIVI	CO2	L6
					OF	۲									

			de: 20A4		
5.		Compare AM and FM.		CO2	L2
	b)	The frequency deviation in an FM broadcast system is 75KHz. If the modulating signal is a single-tone sinusoidal c			
		8KHz, determine the bandwidth of FM signal. What will be the			
		bandwidth when modulating signal amplitude is doubled?		CO2	L5
		UNIT–III			
6.	a)	Illustrate PAM, PWM and PPM waveforms with reference to			
		same clock pulse with necessary diagrams.	6M		
	b)		6M	CO3	L2
7		OR			
1.	a)	With the aid of block diagram, briefly explain Time division multiplexing.	6M	CO3	10
	b)	Analyze how Aliasing affects signal transmission and how it is		003	LZ
	0)	eliminated.		CO3	L4
		UNIT–IV			
8.	a)	Draw the block diagram of a PCM system and explain each	n		
		block in detail.		CO4	L2
	b)	Compare Delta modulation and PCM techniques in terms of			
		bandwidth and signal to noise ratio. OR	DIVI	CO4	L4
0	2)	-	n		
9.	a)	Illustrate the working of adaptive delta modulation system with a neat block diagram.	6M	CO4	L2
	b)	A PCM system uses a uniform quantizer followed by a 7 b			
		encoder. The system bit rate is 50Mbits/sec. Calculate sampling frequency and transmission bandwidth.		CO4	
		UNIT-V	OIVI	004	LO
10.	a)	Describe the generation and detection of Amplitude shift	ft		
		Keying signal.	6M	CO5	L2
	b)	Draw and explain the operation of transmitter and receiver of	of		
		a coherent FSK.	6M	CO5	L2
	,	OR			
11.	a)	Compare ASK, FSK and PSK with respect to bandwidtl requirements, power requirements, immunity to channe			
		impairments and equipment complexity.		CO5	14
	b)	Determine the DPSK transmitter output b(t) for bit stream		000	
	- /	d(t) = 001010011010. Derive the expression for bandwidth			
		requirement of DPSK signal.	6M	CO5	L6
		*** End ***			