Hall Ticket Number :	R-20
Code: 20A444T	
II B.Tech. II Semester Regular Examinati Advanced Digital Design Co	-
(Electronics and Communication Er	-
Max. Marks: 70	Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and I	Part-B)
2. In Part-A, each question carries Two mark.	
3. Answer ALL the questions in Part-A and Part-B	
<u>PART-A</u> (Compulsory question)	
1. Answer ALL the following short answer quest	jons $(5 \times 2 = 10 \text{M})$ CO Bloom
a) How many transisters are used in a CMOS	Ecter
b) Write any two data types.	CO2 L1
c) What are the two delay models?	CO3 L1
d) What are three state devices?	CO4 L1
	CO5 L1
e) Explain in short about a latch.	000 ET
PART-B Answer <i>five</i> questions by choosing one question from ea	ch unit (5 x 12 = 60 Marks)
	Marks CO Bloon Leve
UNIT–I	
a) Design a CMOS transistor circuit for 2-input	t NAND gate
and explain its operation	6М со1 L
b) Tabulate the differences between various log	ic families. 6Μ co1 ι
OR	
a) With the help of a neat circuit diagram, expla	in the 2-input
LS-TTL NAND gate.	6М со1 L
b) Discuss in brief about TTL families.	6М со1 L
UNIT–II	
a) Write about the Data types in VHDL.	6M CO2 L
b) Discuss about the various functions and	•
available in VHDL.	6M CO2 L
OR	
Enumerate the various VHDL operators wi	th necessary

5. Enumerate the various VHDL operators with necessary examples. 12M co2 L3

UNIT–III

6.	a)		6M		
		assignment statements in VHDL.	0IVI	CO3	L2
	b)	Explain about the Process statement in VHDL.	6M	CO3	L2
		OR			
7.	a)	Discuss about			
		i) Wait Statement			
		ii) If Statement	6M	CO3	L2
	b)	Design a VHDL model for 3 x 8 decoder.	6M	CO3	L4
		UNIT–IV			
8.	a)	Design a Full subtractor using VHDL.	6M	CO4	L4
	b)	Design binary to Gray code converter using VHDL	6M	CO4	L4
		OR			
9.	a)	Design a 4X1 Multiplexer using VHDL	6M	CO4	L4
	b)	Design a comparator using VHDL.	6M	CO4	L4
		UNIT–V			
10.	a)	What is Counter? Design a Counter using VHDL.	6M	CO5	L3
	b)	Design JK-Flip Flop using D-Flip Flop.	6M	CO5	L4
		OR			
11.		Elaborate about Synchronous design methodology with			
		necessary diagrams.	12M	CO5	L2
		*** Fnd ***			

*** End ***

Hall Ticket Number :			_
Code: 20A442T	R-2	20	
II B.Tech. II Semester Regular Examinations August 202	22		
Communication Systems			
(Electronics and Communication Engineering) Max. Marks: 70	Time:	3 Hou	rs
********* Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two mark.			
3. Answer ALL the questions in Part-A and Part-B PART-A			
(Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$		СО	Blooms Level
a) Define Modulation index and percent modulation for an AM wa	ive.	CO1	Level L1
b) What is frequency modulation and write the expression	for	CO2	L1
instantaneous frequency?			
c) What is Multiplexing?		CO3	L1
d) What is the role of regenerative repeaters in PCM?		CO4	L1
e) Differentiate various digital modulation schemes.		CO5	L4
PART-B		`	
Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 0$	bu Mark	(S)	
	Marks	со	Blooms Level
UNIT–I			
2. a) Explain the coherent detection of DSB-SC Modulated			
waves	6M	CO1	L2
b) A 500 W carrier is amplitude modulated to a depth of 75%. Calculate the total power in case of SSB technique.			
How much power saving is achieved for SSB compared			
to AM and DSBSC?	6M	CO1	L1
OR			
3. a) Describe the time domain band-pass representation of			
SSB with necessary sketches	6M	CO1	L3
b) What are the applications of Modulation? Explain in detail.	6M	CO1	L2
UNIT–II			
4. Explain demodulation of FM signal with the help of S-curve method.	101/	000	
OR	12M	002	L2
5. a) Explain FM generation using indirect method.	6M	CO2	L2
		002 age 1 o	

Code: 20A442T b) Give the bandwidth relationship using Carson's rule in FM. 6M CO2 L1 UNIT-III 6. a) Draw and explain the block diagram of TDM system 6M CO3 L2 b) Explain the generation of PPM signals 6M CO3 L2 OR 7. a) Explain Pulse amplitude modulation in detail. 6M CO3 L2 b) Give comparison of PAM, PWM and PPM. 6M CO3 L3 **UNIT-IV** 8. a) With the help of block diagram explain the elements of digital communication systems. 9M CO4 L2 b) Explain about Uniform and Non-Uniform Quantization? 3M CO4 L2 OR 9. a) Draw the block diagram and explain the Delta modulation and demodulation system 6M CO4 L3 b) Derive the expression for quantization noise in DM. 6M CO4 L4 **UNIT-V** 10. a) Discuss about the Coherent Detection of Frequency Shift Keying 6M CO5 L3 b) Explain generation and detection of DPSK signals 6M CO5 L3 OR 11. a) Describe the generation and coherent detection of Amplitude Shift Keying (ASK) signal. 6M CO5 L3 b) Illustrate the of BPSK system and discuss its bandwidth requirements 6M CO5 L4 *** End ***

ĺ	На	II Ticket Number :			
	°od	e: 20A443T	R	-20	
,	cou	II B.Tech. II Semester Regular Examinations August 2 Electromagnetic Theory	022		
I	Max	(Electronics and Communication Engineering) . Marks: 70	Time	e: 3 He	ours
I	Note	 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)			
	1. /	Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$) (00	Blooms Level
a)	Sta	ate Gauss's law.		1	L2
b)	De	fine Energy Density		2	L1
c)	Sta	ate Dielectric Constant		3	L1
d)	Wł	nat is Faraday's Law.		4	L1
e)	Lis	t out the applications of Poynting theorem.		5	L4
		PART-B	(0 Ma		
		Answer <i>five</i> questions by choosing one question from each unit (5 x 12	= ou ma	IKS)	
			Marks	СО	Blooms Level
		UNIT–I			
2.	a)	Write short notes on 3 coordinate systems Rectangular,			
		cylindrical and spherical coordinate systems	6M	CO1	L1
	b)	Define electric field intensity in terms of point charge and			
		describe its salient features.	61VI	CO1	L2
0	、	OR			
3.	a)	Write a short note on following:	6M		
	۲	i) Stoke's theorem ii) Divergence theorem	DIVI	CO1	L3
	b)	Explain any 2 different methods of Del operator and its operations	6M	CO1	L2
		UNIT-II	0101	001	LZ
4	a)	State and explain Coulomb's law? Obtain an expression			
	~,	of it in vector form.	6M	CO2	2 L1
	b)	Relationship between E and V and describe its			
		Maxwell's equations.	6M	CO2	L3
		OR			

5. a)	Derive Coulomb's law using Gauss's law.	6M	CO2	L4
b	Derive the expression for energy density.	6M	CO2	L2
	UNIT-III			
6. a)	Define linear, isotropic and homogeneous dielectrics.	6M	CO3	L2
b)	State and prove Continuity equation.	6M	CO3	L1
	OR			
7. a)	Derive the capacitance of coaxial cable having the inner conductor radius 'a' and outer conductor radius 'b'.	6M	CO3	L3
b)	Explain the polarization in dielectrics, dielectric constant & strength.	6M	CO3	L3
	UNIT-IV			
8. a)	State and prove biot savart's law ,using Biot savart's law derive an expression for magnetic field strength H due to a finite &Infinite filamentary conductor carrying a current I and placed along Z-axis at appoint P on Y-axis .hence deduce the magnetic field strength for the			
	length of the conductor extending from - + .	6M	CO4	L4
b)	Derive the force equations due to current element.	6M	CO4	L3
	OR			
9. a)	Define and Explain Ampere's circuit Law	6M	CO4	L2
b)	State Maxwell's 4 Equations in Differential and Integral form with clear statement for static fields	6M	CO4	L1
	UNIT-V			
,	State and prove pointing theorem and pointing vector.	6M	CO5	L1
b)	Write short notes on normal incidence of a plane wave on a perfect dielectric	6M	CO5	L4
	OR			
11. a)	Explain the various applications of smith chart in Transmission line?	6M	CO5	L2
b)	Explain wave propagation mechanism in detail *** End ***	6M	CO5	L2

	Ticket Number :	R	-20	
Cod	e: 20A441T			
	II B.Tech. II Semester Regular Examinations August 20 Linear IC Applications)ZZ		
	(Electronics and Communication Engineering)			
Max	x. Marks: 70	Time	: 3 Ho	ours
Note	: 1. Question Paper consists of two parts (Part-A and Part-B)			
11010	2. In Part-A, each question carries Two mark.			
	3. Answer ALL the questions in Part-A and Part-B			
	PART-A			
	(Compulsory question)		00	Blooms
	swer ALL the following short answer questions $(5 \times 2 = 10M)$		CO	Level
,	Draw the equivalent circuit of an ideal OP-AMP.		CO1	Lí
b)	List the important features of an instrumentation amplifier.		CO2	
c)	Give some applications of op-amp as a comparator.		CO3	La
d)	Define capture range and lock in range of a PLL.		CO4	L2
e)	List the various types of ADCs		CO5	Ľ
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	= 60 Ma	rks)	
		Marks	со	Blooms
	UNIT–I	Marito	00	Level
a)	Draw the block diagram of an operational amplifier and discuss each block.	6M	001	
b)	Differentiate ideal and practical op-amp with circuit	OIVI	COT	L6
D)	diagram.	6M	CO1	L2
	OR	••••	001	LZ
	Discuss the various DC characteristics of an op-amp?	12M	004	
			CO1	L2
2)	With help of circuit diagram discuss how on amp is			
a)	With help of circuit diagram discuss how op-amp is used as a differentiator.	6M	CO2	
ይ)		OIVI	CO2	L2
b)	Describe how an op-amp can be used as integrator? Also derive expression for the output.	6М	0.000	
		OIVI	CO2	L3
	OR			

5.	a)	With the diagram, summarize the working of non- Inverting amplifier.	6M	CO2	L2
	b)	Explain adder-subtractor circuit using op-amp with help of circuit diagram.	6M		L3
6.	a)	Describe the working of a Schmitt trigger with neat circuit diagram.	6M	CO3	L2
	b)	With neat diagram explain how op-amp can be used for comparator.	6M	CO3	L3
		OR			
7.	a)	Compare and contrast saw tooth and triangular wave generator.	6M	CO3	L2
	b)	Write short notes on: Log and Antilog amplifier UNIT-IV	6M	CO3	L6
8.	a)	Draw and explain the circuit of mono stable multivibrator using 555 timer	6M	CO4	L3
	b)	Deliberate the working of an Astable multivibrator using IC555 with circuit diagram	6M	CO4	L3
		OR			
9.	a)	Write short notes on applications of PLL.	6M	CO4	L6
	b)	Explain the working of IC565 and illustrate the functional block diagram.	6M	CO4	L3
		UNIT-V			
10.		Describe the working of dual slope ADC with circuit diagram.	12M	CO5	L2
		OR			
11.		Write notes on Analog to Digital converters.	6M	CO5	L6
	b)	Illustrate with a neat diagram the working of R-2R ladder DAC and mention its limitations.	6M	CO5	L2

		Hall Ticket Number :			
			R-2	20	
	C	∟ II B.Tech. II Semester Regular Examinations August 202	 າ		
		Numerical Methods and Random Variables	Ζ		
		(Common to EEE & ECE)			
	Μ		Time:	3 Hou	Jrs

	No	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
		 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
		PART-A			
		(Compulsory question)			
	1.	Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$	(co ^I	Blooms Level
a)	Fin	d the missing term in the following data:			
			C	CO1	L1
b)	Giv	ven $dy = 1$.2 by Eul	er's		
	me	$\frac{dy}{dx} = 1 - \frac{1}{y}$ initial condition $\frac{1}{y} = 0$ at $\frac{1}{x} = 0$; find $\frac{1}{y}$ for $x = 1$.2 by Eul thod. Use $h = 0.05$.		:02	L1
c)		d the mode of the numbers 7, 7, 7, 9, 10, 11, 11, 11, 11, 12.		;O2 ;O3	L2
d)		ate the Addition Law of Probability.		;00 ;04	L1
e)		e average number of phone calls/minute coming into a switch board betwee		04	L 1
0)		d 4 PM is 2.5. Determine the probability that during one particular minute there			
	be	2 calls.	C	CO5	L3
		PART-B			
		Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 6$	0 Marl	ks)	D.
			Marks	CO	Blooms Level
		UNIT–I			
2.	a)	Find the root of the equation $\frac{1}{\cos x}$ gregula-falsi method correct	014	004	14
	۲	to four decimal places. $\cos x = xe^{-3}$ usin	6IVI	CO1	L1
	b)	From the following table predict the number of students who obtained marks between 40 and 45.			
		Marks 30-40 40-50 50-60 60-70 70-80			
		No. of students 31 42 51 35 31	6M	CO1	L3
		OR			
3.	a)	Find the positive root of $\frac{\frac{4}{1}}{\frac{4}{4}} = 0$ correct to three decimal places, using			
		Newton – Rapson meth $_{od}^{x^+} - x = 1$	6M	CO1	L1
	b)	New rmine the polynomial $-\infty$ / using Lagrange's formula and hence find			
		f(x) =			
		2 3 12 147	6M	CO1	L3
		UNIT–II			
4.	a)	Use the Trapezoidal rule to calculate the integral $\int_{-2}^{-2} e^{-x^2}$ 10			
		intervals. $0 e dx$ taking	6M	CO2	L3

		Co	ode: 20)AC42T	
	b)	Using modified body, determine $\frac{dy}{dx} = \frac{e^{\text{uler's meth}}}{x^2 + y^2}$, $e^{\text{ven that }}_{y(0)} = 1$.			
		equation $\frac{dy}{dx} = \frac{2}{x^2 + y^2}$, given that $y(0) = 1$.	6M	CO2	L3
		OR			
5.	a)	Determine $\int_{0}^{\epsilon} \frac{dx}{1+x^2}$ by using Simpson n's 3/8 rule.			
	. 、	$\int_{0}^{1+x_2} by us_{\text{ing Simpschild of the line}} \int_{0}^{1+x_2} by us_{\text{ing Simpschild of the line}}$	6M	CO2	L3
	b)	Using mine $\int_{0}^{c} \frac{dx}{1+x^{2}} = \frac{1}{c}$ tethod of order 4, calculate y for $x = 0.1, 0.2$, given that $\frac{dy}{dx} = \frac{Runge-Kutta}{xy + y^{2}, y(0)} = 1.$			
			6M	CO2	L3
c		UNIT-III			
6.		The following table shows the marks obtained by 100 candidates in an examination. Calculate the mean, median and mode:			
		Marks Obtained 1-10 11-20 21-30 31-40 41-50 51-60			
		No. of candidates 3 16 26 31 16 8	12M	CO3	L3
		OR			
7.		Determine the correlation coefficient for the following data:			
		<u>attor</u> 2 4 6 8 10			
			12M	CO3	L3
8.		UNIT-IV Two marbles are drawn in succession from a box containing 10 red, 30			
0.		white, 20 blue and 15 orange marbles, with replacement being made after			
		each drawing. Find the probability that (a) both are white (b) first is red and			
		second is white (c) neither is orange.	12M	CO4	L2
9.		OR A random variables X has the following probability function:			
5.		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		P(x) 0 K 2K 2K 3K K ² 2K ² 7K ² +K			
		Determine: (i) K (ii) Evaluate P(X<6), P($X \ge 6$), P(0 <x<5) 4)<="" \le="" and="" p(0="" td="" x=""><td></td><td></td><td></td></x<5)>			
		(iii) If $P(X \le K) > \frac{1}{2}$, find the minimum value of K and (iv) Determine the			
		distribution function of X (v) Mean (vi) variance.	12M	CO4	L5
10.	a)	The probability of a man hitting a target is 1/3. (i) If he fires 5 times, what is the probability of his hitting the target at least twice? (ii) How many times			
		must he fire so that the probability of his hitting the target at least once is			
		more than 90%?	6M	CO5	L3
	b)	In a factory producing blades, the probability of any blade being defective is			
		0.002. If blades are supplied in packets of 10, determine the number of packets containing (i) no defective (ii) one defective blades respectively in a			
		consignment of 10000 packets.	6M	CO5	L3
		OR			
11.	a)	If X is a normal variate with mean 30 and standard deviation 5. Find the			
		probabilities that (i) $26 \le X \le 40$ (ii) $X \ge 45$.	6M	C05	L1
	b)	Fit a binomial distribution to the following data			
		x 0 1 2 3 4 5 f 2 14 20 34 22 8	6M	C05	L1
		*** End ***			