\square
Code: 20A444T \square
R-20
|| B.Tech. || Semester Regular Examinations August 2022

Advanced Digital Design Concepts

(Electronics and Communication Engineering)
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \mathrm{X} 2=10 \mathrm{M}$) co

Blooms Level
a) How many transisters are used in a CMOS Inverter? CO1
b) Write any two data types. CO 2
c) What are the two delay models? CO 3
d) What are three state devices? CO 4
e) Explain in short about a latch. CO 5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

Marks CO

UNIT-I

2. a) Design a CMOS transistor circuit for 2-input NAND gate and explain its operation

6M CO1 L4
b) Tabulate the differences between various logic families.

6M CO1
L2

OR

3. a) With the help of a neat circuit diagram, explain the 2-input LS-TTL NAND gate.
b) Discuss in brief about TTL families.

UNIT-II

4. a) Write about the Data types in VHDL.

6M CO1
$6 \mathrm{M} \mathrm{CO1}$

$$
\mathrm{L} 2
$$

b) Discuss about the various functions and procedures available in VHDL.

6M CO2 L2

6M CO2 L2

OR

5. Enumerate the various VHDL operators with necessary examples.

12M CO2 L3

UNIT-III

6. a) Distinguish between concurrent and sequential signal
assignment statements in VHDL.
b) Explain about the Process statement in VHDL.
OR
7. a) Discuss about
i) Wait Statement
ii) If Statement

6 M CO3 L2
b) Design a VHDL model for 3×8 decoder.

UNIT-IV

8. a) Design a Full subtractor using VHDL.
b) Design binary to Gray code converter using VHDL

6 M CO 3

OR

9. a) Design a 4 X 1 Multiplexer using VHDL

6 M CO 4
b) Design a comparator using VHDL.

UNIT-V

10. a) What is Counter? Design a Counter using VHDL.

6M CO5L3
b) Design JK-Flip Flop using D-Flip Flop.

6 M CO5 L4
11. Elaborate about Synchronous design methodology with necessary diagrams.

12M CO5
Hall Ticket Number :

\square
Code: 20A442T
R-20
|| B.Tech. II Semester Regular Examinations August 2022
Communication Systems
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO
a) Define Modulation index and percent modulation for an AM wave. CO1
b) What is frequency modulation and write the expression for CO 2 CO3
c) What is Multiplexing? CO4
d) What is the role of regenerative repeaters in PCM? CO5
PART-BAnswer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Explain the coherent detection of DSB-SC Modulated waves
b) A 500 W carrier is amplitude modulated to a depth of 75%. Calculate the total power in case of SSB technique. How much power saving is achieved for SSB compared to AM and DSBSC?
6M co1

OR

3. a) Describe the time domain band-pass representation of SSB with necessary sketches
6M CO1
b) What are the applications of Modulation? Explain in detail. 6M CO1L2

UNIT-II

4. Explain demodulation of FM signal with the help of S-curve method.

OR

5. a) Explain FM generation using indirect method.
b) Give the bandwidth relationship using Carson's rule in FM. 6M CO2 L1
UNIT-III6. a) Draw and explain the block diagram of TDM system6 M COL2
b) Explain the generation of PPM signals 6 M CO L2
OR
6. a) Explain Pulse amplitude modulation in detail. 6 M CO L2
b) Give comparison of PAM, PWM and PPM. 6 M CO L3
UNIT-IV
7. a) With the help of block diagram explain the elements of digital communication systems. 9M CO4 L2
b) Explain about Uniform and Non-Uniform Quantization? 3M CO4 L2
OR
8. a) Draw the block diagram and explain the Delta modulationand demodulation system6 M COL3
b) Derive the expression for quantization noise in DM. 6 M CO L4
UNIT-V
9. a) Discuss about the Coherent Detection of Frequency Shift Keying $6 \mathrm{M} \mathrm{Co5}$ L3
b) Explain generation and detection of DPSK signals $6 \mathrm{M} \mathrm{CO5}$ L3
OR
10. a) Describe the generation and coherent detection of Amplitude Shift Keying (ASK) signal. L3

b) Illustrate the of BPSK system and discuss its bandwidth requirements 6 M cos L4

R-20

Code: 20A443T
|| B.Tech. || Semester Regular Examinations August 2022
Electromagnetic Theory
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}$| Blooms |
| :---: |
| Level |

a) State Gauss's law. 1
b) Define Energy Density 2 L1
c) State Dielectric Constant $\quad 3 \quad$ L1
d) What is Faraday's Law. 4 L1
e) List out the applications of Poynting theorem. 54

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

2. a) Write short notes on 3 coordinate systems Rectangular, cylindrical and spherical coordinate systems

6M CO1 L1
b) Define electric field intensity in terms of point charge and describe its salient features.

6M CO1 L2

OR

3. a) Write a short note on following:
i) Stoke's theorem ii) Divergence theorem

6M CO1 L3
b) Explain any 2 different methods of Del operator and its operations

6M CO1

UNIT-II

4. a) State and explain Coulomb's law? Obtain an expression of it in vector form.

6M CO2
b) Relationship between E and V and describe its Maxwell's equations.

6M CO2
5. a) Derive Coulomb's law using Gauss's law. 6 M CO 2 L4b) Derive the expression for energy density.$6 \mathrm{M} \mathrm{CO2}$
UNIT-III
6. a) Define linear, isotropic and homogeneous dielectrics.6M CO3L2
b) State and prove Continuity equation.6 M COL1
OR
7. a) Derive the capacitance of coaxial cable having the innerconductor radius 'a' and outer conductor radius 'b'.
b) Explain the polarization in dielectrics, dielectric constant \& strength.

UNIT-IV

8. a) State and prove biot savart's law, using Biot savart's law derive an expression for magnetic field strength H due to a finite \&Infinite filamentary conductor carrying a current I and placed along Z-axis at appoint P on Y-axis .hence deduce the magnetic field strength for the length of the conductor extending from $-\infty+\infty$.
b) Derive the force equations due to current element.

OR

9. a) Define and Explain Ampere's circuit Law
$6 \mathrm{M} \mathrm{CO4}$L2
b) State Maxwell's 4 Equations in Differential and Integral form with clear statement for static fields
6M CO4L1

UNIT-V

10. a) State and prove pointing theorem and pointing vector.
6M co5
b) Write short notes on normal incidence of a plane wave on a perfect dielectric
6 M cos

OR

11. a) Explain the various applications of smith chart in Transmission line?
$6 \mathrm{M} \mathrm{CO5}$
b) Explain wave propagation mechanism in detail
$6 \mathrm{M} \mathrm{co5}$
Hall Ticket Number :
\squareCode: 20A441T
R-20
II B.Tech. Il Semester Regular Examinations August 2022
Linear IC Applications(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
12. In Part-A, each question carries Two mark.
13. Answer ALL the questions in Part-A and Part-B
PART-A(Compulsory question)
14. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO
Blooms
a) Draw the equivalent circuit of an ideal OP-AMP. CO1
b) List the important features of an instrumentation amplifier. CO2
c) Give some applications of op-amp as a comparator. CO3 L3
d) Define capture range and lock in range of a PLL. CO4 L2
e) List the various types of ADCs CO 5L1
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
Marks CO

UNIT-I

2. a) Draw the block diagram of an operational amplifier and discuss each block.
6 M cos
b) Differentiate ideal and practical op-amp with circuit diagram.
6M co1
L2

OR

3. Discuss the various DC characteristics of an op-amp? 12 M co1 L2

UNIT-II

4. a) With help of circuit diagram discuss how op-amp is used as a differentiator.
6M co2
b) Describe how an op-amp can be used as integrator? Also derive expression for the output.
6M co2
L3
OR
5. a) With the diagram, summarize the working of non- Inverting amplifier. 6M co2 L2
b) Explain adder-subtractor circuit using op-amp with help of circuit diagram. 6M co2 L3
UNIT-III
6. a) Describe the working of a Schmitt trigger with neat circuit diagram. 6 M cos L2
b) With neat diagram explain how op-amp can be used for comparator. 6 M соз L3
OR
7. a) Compare and contrast saw tooth and triangular wavegenerator.$6 \mathrm{M} \mathrm{co3}$L2
b) Write short notes on: Log and Antilog amplifier 6M cos L6
UNIT-IV
8. a) Draw and explain the circuit of mono stable multivibrator using 555 timer $6 \mathrm{M} \mathrm{co4}$ L3
b) Deliberate the working of an Astable multivibrator usingIC555 with circuit diagram6M co4L3
OR
9. a) Write short notes on applications of PLL.6M co4L6
b) Explain the working of IC565 and illustrate thefunctional block diagram.6 M co4 L3
UNIT-V
10. Describe the working of dual slope ADC with circuitdiagram.12M cosL2
OR
11. a) Write notes on Analog to Digital converters. 6 M cos L6
b) Illustrate with a neat diagram the working of $R-2 R$ladder DAC and mention its limitations.
\square
Code: 20AC42T

Numerical Methods and Random Variables

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions
(5 X $2=10 \mathrm{M}$)
a) Find the missing term in the following data:
b) Given $\frac{d y}{d x}=1-y \sum_{y \text { witr }}$ initial condition $\frac{\square}{y=0} 0$ at $\frac{1}{x=0}$; find $\frac{1}{y \text { for } x=1} 0$ by Euler's method. Use $h=0.05$.
c) Find the mode of the numbers $7,7,7,9,10,11,11,11,11,12$.
d) State the Addition Law of Probability.
e) The average number of phone calls/minute coming into a switch board between 2 and 4 PM is 2.5 . Determine the probability that during one particular minute there will be 2 calls.

 0.2 by Euler's														

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

 to four decimal places.

6M CO1
L1
b) From the following table predict the number of students who obtained marks between 40 and 45.

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

$6 \mathrm{M} \mathrm{CO1}$
3. a) Find the positive root of $\vec{\square}$ Newton - Rapson method. $-x=1$
b) Newrmine the polynomial $-x=$ using Lagrange's formula and hence find ${ }^{\text {Dete }}$ for

\cdots	0	1	2	5
\underline{x}	2	3	12	147
UNIT-II				

6 M CO1 L3
4. a) Use the Trapezoidal rule to calculate the integral $\underset{\substack{z=\\ 0 \\ e \\ e e^{x^{2}}}}{\overrightarrow{-}} d x$ taking 10 intervals.
 equation $\frac{d y}{d x}=\begin{gathered}\text { Euler's mett }{ }^{2}{ }^{2}+y^{2} \text {, gimin }\end{gathered}$

OR

5. a) Determine $\int_{0}^{-\epsilon} \frac{d x}{1+x^{2}}$ by using simpscen's $3 / 8$ rule.
 $\frac{d y}{d x}=\begin{aligned} & \text { Runge-K } 1_{\text {dta }} m \\ & x y+y^{2}, y(0)\end{aligned}=1$.

UNIT-III

6. The following table shows the marks obtained by 100 candidates in an examination. Calculate the mean, median and mode:

Marks Obtained	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$
No. of candidates	3	16	26	31	16	8

OR

7. Determine the correlation coefficient for the following data:

- ${ }^{\text {ato }}$	2	4	6	8	10
	5	7	9	8	11

OR

9. A random variables X has the following probability function:

x	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	K	2 K	2 K	3 K	$\mathrm{~K}^{2}$	$2 \mathrm{~K}^{2}$	$7 \mathrm{~K}^{2}+\mathrm{K}$

Determine: (i) K (ii) Evaluate $\mathrm{P}(\mathrm{X}<6), \mathrm{P}(X \geq 6), \mathrm{P}(0<\mathrm{X}<5)$ and $\mathrm{P}(0 \leq X \leq 4)$
(iii) If $P(X \leq K)>\frac{1}{2}$, find the minimum value of K and (iv) Determine the distribution function of $X(v)$ Mean (vi) variance.

UNIT-V

10. a) The probability of a man hitting a target is $1 / 3$. (i) If he fires 5 times, what is the probability of his hitting the target at least twice? (ii) How many times must he fire so that the probability of his hitting the target at least once is more than 90% ?
b) In a factory producing blades, the probability of any blade being defective is 0.002 . If blades are supplied in packets of 10 , determine the number of packets containing (i) no defective (ii) one defective blades respectively in a consignment of 10000 packets.

OR

11. a) If X is a normal variate with mean 30 and standard deviation 5 . Find the probabilities that (i) $26 \leq X \leq 40$ (ii) $\mathrm{X} \geq 45$.
b) Fit a binomial distribution to the following data

x	0	1	2	3	4	5
f	2	14	20	34	22	8

6 M CO 2

6 M CO 2

12 M CO 3
$6 \mathrm{M} \mathrm{CO5}$
6 M CO2 L3

12 M CO 3
L3

$6 \mathrm{M} \mathrm{CO5}$
L3

6M C05 L1

6M C05

