	R-20		
, ,	/June 2	2024	
Microprocessor and Interfacing			
	ſime: 3 ⊦	lours	
3. Answer ALL the questions in Part-A and Part-B			
PART-A			
(Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{M})$	CO	BL	
. , ,			
•			
·			
Compulsory question Compulsory question			
,			
·	CO5	L2	
Answer five questions by choosing one question from each unit (5 x 12 =	= 60 Mark	(s)	
	Marks	CO	BL
UNIT-I			
What do you mean by addressing modes? What are the different addressing			
	12M	CO1	L2
· · · · · · · · · · · · · · · · · · ·	4014	004	
	12M	CO1	L1
· ·	4014	000	
	12IVI	CO2	L3
	121/	CO2	13
	I Z IVI	002	LJ
·		CO3	12
·	I Z IVI	003	LZ
-			
	12M	CO3	L2
	12M	CO4	L3
Describe the various modes of operation in 8253 programmable internal timers.	12M	CO4	L3
	12M	CO5	12
• •	1 4 1 1 1	555	
		CO5	L3
*** End ***			

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

			1											
	Hal	l Ticket Number :												
	Coc	le: 20A543T									R-	20		
	ΠB.	Tech. II Semester Re	_		•		-		natio	ons M	ay/Jun	e 20)24	
		(Common		•		g Sys			and	Δ1 <i>8.</i> λ <i>λ</i> 1	1			
	Мах	k. Marks: 70	io CSL,	7 (10)		****	,, C) L (/ \i) \	aria	7 (102/11)	Time:	3 H	ours	
	Note	e: 1. Question Paper con	sists of	two p			A and	d Part-	B)					
		2. In Part-A, each que3. Answer ALL the q						В						
			(Com		RT-A ry que	stion)	1						
	1. A	nswer ALL the follo		_					(5)	X 2 =	10M)	СО	BL	_
		Define System call	•				•		`		,	CO.	1 L1	
	•	Define Thread sch		<u>.</u>								CO	2 L1	
	,	Describe Deadlock	•									CO	3 L2	<u>)</u>
	d)	Define RAID.										CO	4 L1	
	e)	List out the Goals	of Prote	ectio	n.							CO	5 L1	
	•				PAI	RT-B								
	Ar	nswer <i>fiv</i> e questions by	y choosi	ng o	ne q	uestio	n froi	n each	unit	(5 x 1			_	
											Marl	KS	СО	BL
2	٥)	What are the convi	oos of			IT-I	tom	2 Evr	Join		e.	١./	004	
۷.	•	What are the servi		-		•		-	nain	•			CO1	L2
	b)	List and explain va	mous เ	pes		•	III Ca	alis.			О	M	CO1	L2
2		\\/hat is presses		ار باد)R	ماماء		"01 :0					
3.		What is processe process.	es scn	eau	iirig	: ⊏X	Jiaii	i ope	rauc	ons c		\1	CO1	1.0
		process.			LINI	IT–II					121	VI	COT	L2
4.		Explain thread libra	aries in	det							12	\/I	CO2	1.2
٠.		Explain tineda libre	A1100 111	act		R					121	VI	002	LZ
5	a)	Explain Multiproce	ssor so	hed			etail				61	\/I	CO2	1.0
Ο.	b)	Describe Peterson				_	otan	•					CO2	L2
	D)	Describe i etersori	3 0014			T–III					Oi	VI	CO2	LZ
6.		Explain the following	าต		OIVI	1-111								
Ο.		a) Principles of De	•											
		b) Deadlock chara		tion										
		c) Deadlock detect			oida	nce					12	M	CO3	L2
		,)R								
7.	a)	Define paging. Illu	strate	the			of tl	he pa	ae t	able	in			
· -	/	detail.			•			- 12 34	J			M	CO3	L4
	b)	Write short notes of	n cont	iguo	us r	nemo	ry a	llocati	on.		61	M	CO3	L1
	,			•			•						L of 2	-

Code: 20A543T

UNIT-IV Define Mass-storage structure. Illustrate Disk scheduling in 8. detail. 12M CO₄ L₄ OR 9. a) Explain stable-storage implementation. 6M CO4 L2 b) List out the objectives of file management systems? Illustrate the file system architecture. 6M CO4 L4 **UNIT-V** 10. a) Write short notes on Implementation of Access Matrix. 6M CO₅ L₁ b) Explain computer -security classifications. 6M CO5 L2 OR 11. a) Explain firewalls used to protect systems and networks. 8M CO5 L2 b) Describe user authentication. 4M CO5 L2

*** End ***

	Hall Tielret Number	Probability and Statistics (Common to CE, ME, CSE, AI&DS, CSE(DS), CSE(AI) and AI&ML) . Marks: 70 ********** 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) Answer ALL the following short answer questions (5 X 2 = 10M) CO BL ample of five university students responded to the question "How ch time, in minutes, did you spend on the social network site terday?" 100, 45, 60, 130, 30. Find the mean and the median. CO1 L1 at is the probability that a leap year selected at random will contain										
		R-20										
	Probability and Statistics											
	Max. Marks: 70	•										
1.	Answer ALL the following short answer questions ($5 \times 2 = 10$)M) CO BL										
a)	·											
	yesterday?" 100, 45, 60, 130, 30. Find the mean and the median.	CO1 L1										
b)	• • • • • • • • • • • • • • • • • • • •	ntain										
- \	53 Sundays?											
,												
u)		CO4 L3										
C)	Write T statistic for analysis of r x c table.	CO5 L1										
		60 Marke \										
	Answer Tive questions by choosing one question from each unit (3 x 12 =	•										
	UNIT-I											
2.												
	Age (in years) 20-30 30-40 40-50 50-60 60-70 70-80	80-90										
	No. of members 3 61 132 153 140 51	2										
	OR											
3.	Physics are as follows. Two numbers within brackets denote the ranks of the students in Mathematics and Physics: (1,1) (2,10) (3,3) (4,4) (5,5) (6,7) (7,2) (8,6) (9,8) (10,11) (11,15) (12,9) (13,14) (14,12) (15,16) (16,13).											
	•	12M CO1 L4										
4.	respectively 25%.35% and 40% of the total. Of their output 5, 4, 2 percent are defective bolts. A bolt is drawn at random from the product and is found to be defective.											
	machines A, B and C?	12M CO2 L2										

Code: 20AC41T

5. Let X be a continuous random variable with distribution:

$$f(x) = \begin{cases} k x^2 & \text{if } 0 \le x \le 1\\ 0 & \text{elsewhere} \end{cases}$$

(i) Evaluate k (ii) Find $p(1/4 \le X \le 3/4)$. (iii) Find p(X > 2/3). 12M CO2 L5

UNIT-III

6. a) The probability that a patient recovers from a rare blood disease is 0.4. If 15 people are known to have contracted this disease, what is the probability that (i) at least 10 survive, (ii) from 3 to 8 survive, and (iii) exactly 5 survive?

6M CO3 L1

b) A car hires firm has two cars which it fires out day by day. Tile number of demands for a car on each day is distributed as Poisson variate with mean 1. 5. Calculate the proportion of days on which (i) neither car is used, and (ii) some demand is refused.

6M CO3 L3

OR

7. a) Out of 800 families with 5 children each, how many would you except to have (i) 3 boys (ii) either 2 or 3 boys? (iii) 5 girls. Assume equal probabilities for boys and girls.

6M CO3 L2

b) In a normal distribution, 7% of the items are under 35 and 89% are under 63. What are the mean and standard deviation of the distribution?

6M CO3 L1

UNIT-IV

8. a) The average zinc concentration recovered from a sample of measurements taken in 36 different locations in a river is found to be 2.6 grams per milliliter. Find the 95% and 99% confidence intervals for the mean zinc concentration in the river. Assume that the population standard deviation is 0.3gram per milliliter.

6M CO4 L2

b) A study showed that 64 of 180 persons who saw a photocopying machine advertised during the telecast of a baseball game and 75 of 180 other persons who saw it advertised on a variety show remembered the brand name 2 hours later. Use the Z- statistic to test at the 0.05 level of significance whether the difference between the corresponding sample proportions is significant.

6M CO4 L3

OR

9. a) If x = 36 of n = 100 persons interviewed are familiar with the tax incentives for installing certain energy-saving devices, construct a 95% confidence interval for the corresponding true proportion.

6M CO4 L3

Code: 20AC41T

b) In 64 randomly selected hours of production, the mean and the standard deviation of the number of acceptable pieces produced by a automatic stamping machine are x = 1,038 and s = 146. At the 0.05 level of significance, does this enable us to reject the null hypothesis $\mu = 1,000$ against the alternative hypothesis $\mu > 1,000$?

6M CO4 L5

UNIT-V

10. It is desired to determine whether there is less variability in the silver plating done by Company 1 than in that done by Company 2. If independent random samples of size 12 of the two companies' work yield $s_1 = 0.035$ mil and $s_2 = 0.062$ mil, test the null hypothesis $c_1^2 = c_2^2$ against the alternative hypothesis $c_1^2 < c_2^2$ at the 0.05 level of significance.

12M CO5 L5

OR

11. The following is the distribution of the hourly number of trucks arriving at a company's warehouse:

Trucks arriving per hour	Frequency
0	52
1	151
2	130
3	102
4	45
5	12
6	5
7	1
8	2

Find the mean of this distribution, and using it (rounded to one decimal place) as the parameter , fit a Poisson distribution. Test for goodness of fit at the 0.05 level of significance.

12M CO₅ L₆

*** End ***

	Hall	Ticket Number :															
														F	R-20		
		e: 20A541T B.Tech. II Semes	D	esiç	gn c	and	And	alys	is o	fAl	gori [.]	thm	S	•	une 20	24	
	Мс	Cor xx. Marks: 70	nmo	n to	CSE	:, Alò		, CSE ****		, CS	E(D3) and	&IA b	-	ne: 3 H	ours	
	Note	: 1. Question Pape 2. In Part-A, each 3. Answer ALL	h que	estio	n car	ries	Two art- <i>A</i>	mai	rks. I Pa		Part.	· B)					
						(Con	npul	sory	ques	tion)							
1. A	nsw	er ALL the foll	owi	ng s	hor	t an	swe	er qu	uest	tions	s (5	X 2	= 10	M)		CO	BL
a)	Sho	ow that $2n+3 =$	(n)													CO1	L3
b)	Wha	at is the advant	age	of b	inaı	ry se	earc	:h ov	er l	linea	ır se	arch	1?			CO2	L2
c)	Def	ine 0-1 knapsad	ck p	roble	em.											CO3	L1
d)		e two examples nd solution.	s foi	r op	timiz	zatio	on p	rob	lem	s wł	nich	hav	e a b	oranch		CO4	L1
e)	Wha	at is halting pro	blen	n of	Tur	ing	mac	chine	e?							CO5	L1
	_			_	_			ART-		_		_					
	Α	nswer <i>five</i> questi	ons	by c	hoos	sing	one	ques	stior	1 fror	n ead	ch ur	it (5	x 12 = 6	60 Mark Marks	-	BL
							U	NIT-	I						IVIAIKS		, DL
2	. a)	Define an alg				at a				eria	an a	algoi	rithm	must	6M	CO	1 L1
	b)	Define theta number of till and hard third segment. De notation.	mes igs i	s "P harc	roci der."	rasti ' is	<i>inati</i> prin	<i>ion</i> ted	<i>ma</i> in t	<i>kes</i> he f	eas ollov	s <i>y th</i> wing	nings algo	<i>hard</i> orithm			
		for (i =1; i n for (j=i+1; print "	j Pro	n; j=	= j++ stin	atio	n m arde	er.";	s ea	asy 1	thin	gs h	ard a	and	6M	CO	1 L4
0		Franksia with						OR	.:41	L I L		1		اء مئادات			
3	•	Explain with union operation	on.									•	e wei	gntea	6M	CO	1 L2
	b)	Define big-oh				_				-							
4	. a)	f (n)= a_m n^m +m polynomialWith pseudo	in <i>i</i>	<i>n</i> an	d a _r	m > (0. S UN	how	tha	at <i>f</i> (<i>n</i>) =	0(1	η ^m).		6M	CO	1 L3
		array 10, 50, recurrence for								•							
		its running tin	ne u	ısinç	g the	eta i	nota	ation	١.						9M	CO	2 L2
	b)	What is a gre	edy	-cho	oice	pro	per	ty?							3M	CO	2 L1
								OR									
5	i. a)	State job se instance, $n=7$ $(d_1,d_2,,d_7)=$	7, (p	p ₁ ,p ₂	2,	,p ₇)	= ((3,	5, 2	20,	18,	1, 6	5, 30	} and			
		applying a gre	eed	y alç	gorit	thm										CO	
															Dage	1 of 2	

Code: 20A541T

b) Which of the following arrays is efficiently sorted using quick sort? Justify your answer. A: (1000, 150, 8200, 4300, 5200) B: (600, 1000, 1200, 1500, 1800) 4M CO2 L2 UNIT-III 6. a) Define matrix chain multiplication problem. Design a dynamic programming algorithm to solve matrix chain multiplication problem. Apply your algorithm and find an optimal way of multiplying the chain of four matrices A₁ A₂ A_3 A_4 , where, A_1 , A_2 , A_3 , A_4 have dimensions 5X10, 10X15, 15X20 and 20X25 respectively. Also analyze the running time of your algorithm. 10M CO3 L3 b) What are two ingredients an optimization problem must have to apply dynamic programming? 2M CO₃ L₂ 7. a) Solve the instance n=4, $(a_1,a_2,a_3,a_4)=(do, if, int, while),$ P(1:4)=(3,3,1,1) and q(0:4)=(2,3,1,1,1) of optimal binary search tree problem by applying a dynamic programming algorithm. 10M CO3 L3 b) Define all-pairs shortest paths problem. 2M co3 UNIT-IV 8. a) Define sum of subsets problem. Explain steps in a backtracking solution to solve the sum of subsets problem. 6M CO4 L3 b) Define the following terms. i. Chromatic number of a graph ii. Planar graph iii. m-colorability decision problem, where m is a positive 6M CO4 L2 integer OR 9. a) Explain the general method of branch-and-bound. 4M CO4 L2 b) Define Traveling Salesperson Problem (TSP). Explain briefly the main steps in a branch-and-bound solution to the TSP problem. 8M CO4 L3 UNIT-V 10. a) Does there exists a problem which is NP-hard but not NPcomplete? Justify. 2M CO₅ L₂ b) Define the complexity classes and give an example for each: P, NP, NP-hard and NP-complete. Draw a Venn diagram of the complexity classes P, NP, NP-hard and NPcomplete set of problems under the assumption that P NP. 10M CO5 L2 OR 11. a) Differentiate between deterministic and non-deterministic

*** End ***

algorithms.

b) Explain COOK's Theorem.

6M CO5 L2

6M CO5 L2

Hall Ticket Number :										
Code: 20A542T							F	R-20		
II B.Tech. II Semester Reg			•				ay / Jui	ne 202	24	
	Language Imputer Scie					=				
Max. Marks: 70		*****		rigirie	, CIII I	91	Time	e: 3 Ho	ours	
Note: 1. Question Paper cons 2. In Part-A, each ques 3. Answer ALL the que	tion carries T	wo m	arks.		art-B	3)				
	<u>]</u> (Compi	PART		o n)						
1. Answer ALL the follow	•	•	-	•	(5)	X 2 = 10	M)	CO I	BL	
a) List the differences	•		•		, (0 1	/\ Z = 10	,	1	1	
b) Write the propertie								2	2	
c) List the properties				•				3	1	
d) What is Turing-De	cidable lan	iguag	es?					4	1	
e) Define Turing Red	ucibility							5	1	
	•	PART-			_					
Answer five questions by	choosing on	e ques	stion f	rom e	ach	unit (5 x			-	E
		UNIT	<u></u>				!	Marks	CO	
Construct a minimu				virio	alen	nt to a d	iven			
automaton on whos				-		_				
	States/	а	b							
	→ q0	q0	q3							
	q1	q2	q5							
	q2	q3	q4							
	q3	q0	q5							
	q4	q0	q6							
	q5	q1	q4							
	*q6	q1	q3							
Note: * indicates the	_		45					12M	4	
Note. Indicates the	illiai state	OR						1 2 1 1 1	1	
a) Construct Moore m	achina wh		utout	c ro	sidu	o mod s	for			
a) Construct Moore ma each binary input st			•				וטו	5M	1	
b) Explain Myhill-Nero	•			•	_		and	5141	ı	
explain Myhill-Nerod			ıı su	itabit	, G /	(arripie	and	7M	1	
21-12-12-11-1		UNIT.	- IJ						'	
a) Write the procedure				amm	ar fr	om FA		4M	2	

2.

3.

Code: 20A542T

b) Construct a regular grammar from the following FA M8 2 6 OR 5. a) Define a grammar? What is an ambiguous grammar, explain with an example. 5M 2 2 b) Construct a finite automaton for the regular expression aa(a+b)*abb. 7M 2 6 **UNIT-III** Consider the grammar $G = (\{A_1, A_2, A_3\}, \{a, b\}, P, A_1)$, where 6. P consist of following production rules $A_1 \rightarrow A_2A_3$, $A_2 \rightarrow A_3A_1 \mid b$, $A_3 \rightarrow A_1A_2 \mid a$ convert it into GNF 12M 3 6 OR 7. a) Illustrate pumping lemma for a language is not context free with a suitable example. M8 3 3 b) What is nullable variable? Write the procedure for eliminating €- productions 4M 3 2 **UNIT-IV** Discuss the model of Push Down Automaton with a neat 8. diagram and Construct PDA equivalent to the following grammar $S \rightarrow aAA$ $A \rightarrow aS/bS/a$ 12M OR 9. a) Is NPDA (Nondeterministic PDA) and DPDA (deterministic PDA) equivalent? Illustrate with an example. 6M 4 4 b) Design PDA to accept the Language $\{L = a^nb^n/n\}$ 6M 1}. 6 **UNIT-V** 10. a) Explain the ideas on Time complexity of Deterministic and Non-Deterministic Turing Machines. 6M 5 2 b) Discuss Universal Turing Machines (UTM). 6M 5 2 OR 11. a) What are the Turing recognizable languages and write the closer properties for the same. 5M 5 2 b) List and explain the variant types of Turing Machines 7M 5 1 *** End ***