	Hall Ticket Number :										
(Code: 20A445T			·					R-20		
	II B.Tech. II Seme							itions Ju	ly 2023		
		Microp					_				
١	Max. Marks: 70	(Commo		E, AI& *****		IO AI	×/VIL)	Tir	ne: 3 Ho	ours	
1	Note: 1. Question Pape 2. In Part-A, each 3. Answer ALL	h question c	arries Tw s in Part	yo mai	rks. d Part		rt-B)				
			(Compul				\			_	
	swer ALL the followin	_	-		•		•	···	CC		L
•	lustrate the followir	•					•	,	CO		L2
•	nalyze the differen							?	CO		L6
-	Vhat are the modes	s of operat	ion sup	porte	d by	8255	?		CO		L6
d) V	Vhat is USART?								CO		L6
e) V	Vhat are the differe	nt register	s in 802	286?					CO	5	L2
	Answer five question	ons by choo		ART-I		n each	n unit (5	x 12 = 60	Marks)		
	·	·	Ü	•			`		Marks	СО	BL
			U	NIT-	I						
2. a)) Explain the fur				egist	ers i	n 8086	6. Also			
	discuss the flag	•							6M	CO1	L2
b)	•			•			•	olain			
	CALL and RET	instructior	is in 80	86 in	struc	tion s	set.		6M	CO1	L2
				OR							
3.	Explain branch i	nstruction	s of 80	86 wi	th ex	amp	les.		12M	CO1	L2
			U	NIT-I							
4. a)	With the help of	basic cell	explair	n SRA	AM a	nd D	RAM?		6M	CO2	L6
b)	With a neat pin	diagram e	xplain t	the m	inimu	ım m	ode op	eration			
	of 8086.								6M	CO2	L2
				OR							
5. a)	What is the pur	rpose of	ALE, B	HE,	DT/R	and	DEN	pins of			
	8086? Show the	eir timing i	n the sy	/stem	bus	cycle	e of 808	36?	6M	CO2	L2
		_	_			_					

b) Draw and discuss the status registers of 8257?

6M CO2 L6

Code: 20A445T

UNIT-III

		UNIT-III			
6.	a)	Draw and explain the interfacing of cascaded 8259s with 8086.	6M	CO3	L6
	b)	Write an ALP in 8086 to generate a symmetrical square wave			
		form with 1KHz frequency? Give the necessary circuit setup with a DAC?	6M	CO3	L6
		OR			
7.	a)	Describe the interrupt structure in 8086.	4M	CO3	L6
	b)	Which interrupt type is associated with TF flag? What is its vector address?	4M	CO3	L6
	c)	What is meant by vector address? How the vector address is			
		used to service the interrupts?	4M	CO3	L6
		UNIT-IV			
8.	a)	Give the specifications of RS232C?	4M	CO4	L6
	b)	Explain about line driver and line receiver used in serial			
		communication?	4M	CO4	L6
	c)	Give the status register of 8251 and explain each bit.	4M	CO4	L6
		OR			
9.		Draw and explain the architecture of 8251.	12M	CO4	L6
		UNIT-V			
10.	a)	Draw and discuss the register organization of 80286.	6M	CO5	L2
	b)	What are the salient features of protected virtual address mode of 80386?	6M	CO5	12
		OR	Oivi	003	L2
11.	a)	Draw and discuss the flag register of 80386 in details.	6M	CO5	
		Enumerate the salient features of Pentium and Pentium Pro.			L2
	b)	*** End ***	OIVI	CO5	L2

		Hall Ticket Number :			
			R-20		
	C	ode: 20A543T II B.Tech. II Semester Regular & Supplementary Examinations Ju	ılv 2021	3	
		Operating Systems	//y 2020	,	
		(Common to CSE, AI&DS and AI&ML)			
	M	ax. Marks: 70	me: 3 H	lours	
	ΝT	**************************************			
	N	ote: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks .			
		3. Answer ALL the questions in Part-A and Part-B			
		<u>PART-A</u> (Compulsory question)			
1	Δn	swer ALL the following short answer questions (5 X 2 = 10M)	(CO	BL
		Define the term "Inter process Communication".			L1
	•	ist out the advantages of using multithreaded programming.			L1
(•	Vhat do you mean by Demand Paging?	C	003	L1
C	d) E	xplain the importance of disk scheduling.	C	CO4	L2
E	e) C	siscuss the principles of protection in a modern computer system	C	CO5	L2
		PART-B		_	
		Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =		-	
			Marks	CO	BL
2	۵)	UNIT-I	CN4	004	
۷.	a)	Explain the Dual-Mode operation of an operating system.	6M 6M	CO1	L2 L2
	b)	What are the three main purposes of an operating system? OR	OIVI	COT	LZ
3	a)	Consider Four jobs to be executed on a single processor system arrive at time			
0.	u)	0 in the order A, B, C, D. Their burst CPU time requirements are 4, 1, 8, 1 time			
		units respectively. Apply FCFS and SJF CPU scheduling algorithms to			
		calculate average waiting time, average turnaround time.	8M	CO1	L3
	b)	Explain the criteria for evaluating the CPU scheduling algorithms? Why do we	484	CO1	1.0
		need it?	4101	CO1	L2
4	a)	Write in detail about the thread libraries.	4M	CO2	L2
••	b)	Apply semaphores to provide synchronization for Producer Consumer problem.	8M		
	.,	OR	•		_0
5.	a)	Discuss Mutual-exclusion implementation with Test And Set instruction.	6M	CO2	L2
	b)	What is a Semaphore? Explain various operations defined on it.	6M	CO2	L2
		UNIT-III			
6.	a)	Apply first-fit, best-fit, and worst-fit algorithms to place processes of size 115			
		KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order) for the given six memory	014	000	
	ا ما	partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 125 KB (in order).	бM	CO3	L3
	b)	Apply FIFO and LRU page replacement algorithms to calculate number of page faults would occur by consider the following page reference string with			
		five nage frames: 1 2 3 4 2 1 5 6 2 1 2 3 7 6 3 2 1 2 3 6	61/1	CO3	ΙQ

Code: 20A543T

OR

7. a) Explain in detail about deadlock detection Techniques.

6M CO3 L2

b) Consider a system with five processes P0 through P4 and three resource types A, B, and C. Resource type A has ten instances, resource type B has five instances, and resource type C has seven instances. Suppose, at time T0, the following snapshot of the system has been taken:

	Allocation				Max	X	Available					
	A	B	C	A	В	C	A	B	C			
P ₀	0	1	0	7	5	3	3	3	2			
P1	2	0	0	3	2	2						
P2	3	0	2	9	0	2						
P3	2	1	1	2	2	2						
P4	0	0	2	4	3	3						

Apply safety algorithm to find out whether the system is in safe state or not? 6M CO3 L3 **UNIT-IV** 8. a) Discuss the advantages and disadvantages of disk space allocation methods. 4M CO4 L2 b) Apply FCFS, SSTF and SCAN disk-scheduling algorithms to calculate total distance (in cylinders) that the disk arm moves to satisfy all the pending requests. The queue of pending requests, in FIFO order is: 2,069, 1,212, 2,296, 2,800, 544, 1,618, 356, 1,523, 4,965, and 368. Let as assume that a disk drive has 5,000 cylinders, numbered 0 to 4,999. The drive is currently serving a request at cylinder 2,150, and the previous request was at cylinder 1,805. 8M CO4 L3 **OR** 9. a) Write short notes on i. File Attributes ii. File System 4M CO4 L2

b) Apply LOOK, C-SCAN and C-LOOK disk-scheduling algorithms to calculate total distance (in cylinders) that the disk arm moves to satisfy all the pending requests. The queue of pending requests, in FIFO order, is: 86, 147, 91, 177, 94, 150, 102, 175, and 130. Let as assume that a disk drive has 200 cylinders, numbered 0 to 199. The drive is currently serving a request at cylinder 143, and the previous request was at cylinder 125.

8M CO4 L3

UNIT-V

10. a) What is access matrix? Explain the different implementations of access matrix

6M CO5 L2

b) Describe in detail how firewalls protect systems & networks.

6M CO5 L2

OR

11. a) Explain the following program threats.

i) Trojan horse ii) Trap door iii) Stack and Buffer overflow

M CO5 L2

b) Explain the computer-security classifications.

6M CO5 L2

*** End ***

	Н	all Ticket Number :													
	C_{Δ}	de: 20AC41T											R-20)	
	CU	II B.Tech. II Semes	ter R	egulo	ır & S	qua	olen	nent	ary	Exai	mino	ations	July 202	:3	
				roba					•				,		
			mmc	n to C	CE, M	Ē, C	SE, A	AI&D	S ar	nd Al	&ML	_)			
	Mc	x. Marks: 70			*	***	****						Time: 3	Hours	
	Not	e: 1. Question Paper o	consis	ts of ty				- A ar	nd P a	art-B	B)				
		2. In Part-A, each of				`					-)				
		3. Answer ALL the	e ques	tions i	n Pa ı	rt-A	and	Part-	-B						
					<u>]</u>	PAR	<u>T-A</u>								
				(C	ompı	ılsor	y que	estion	1)						
1.	Ans	swer ALL the following	ng sho	ort ans	wer	ques	stion	S	(5)	X 2 =	10M)	(CO E	3L
a		rite the formula for Ra							•					:O1 I	_1
b		wo cards are drawn from				-				nd pi	obab	oility tha	-	.00 1	•
_		e both aces if the first		()	•	` '		•							_2
C		the mean of a Poissor			1.8, tr	nen i	ina P	'(X>1)						_3
d		efine Type-I and Type-			-1/C T	+\								_	_3
е) =	xplain briefly the Varia	nce K	atio tes	,	•							C	:O5 I	_2
	Δ	nswer <i>five</i> questions	hy cl	noosin	-	PAR		n fro	m A	ach i	unit (/ 5 x 12) – 60 Mar	ke \	
	^	nswei <i>nve</i> questions	by Ci	100311	ig Oil	e qu	CSLIC	,,,,,,,,)III C	acii	umit	J X 12	. – 00 Ma i Marks	CO	BL
					l	JNIT	I						Marko	00	
2. (Cald	culate Mean, Median a	nd Mo	de fro				」 ເ data	1.						
			0-30	30-40	40-		50-6)-70	70-	80	80-90			
	F	requency 5	9	13	2′		20		15	8	-	3	12M	CO1	L3
						OF									
3.		Find Karl Pearson's co					-			Ť					
				01 10			100	99	97	98	96	95			
		Cost of living 9	8 9	9 99	9 9	7	95	92	95	94	90	91	12M	CO1	L3
					ι	JNIT	 								
4.	a)	State Baye's Theorem	า					_					2M	CO2	L-1
	b)	In a bolt factory mach	ines A	A, B, C	man	ufac	ture 2	20%,	30%	á anc	1 50%	6 of the)		
		total of their output ar	nd 6%	s, 3% a	and 2	% a	re de	fectiv	/e. A	bolt	is d	rawn at	t		
		random and found							•			that is		000	
		manufactured from (i)	wacn	ine A	(II) IVI			(III) IV	iacni	ine C	•		10M	CO2	L-3
5.	2)	A random variable X	ic do	finad a	c tho	OF		tha n	umh	ore c	n th	o facos			
5.	a)	when two dice are thro										e laces		CO2	L-3
	b)	For the continuous pro													
	,	(i) k (ii) Mean (iii) Vari		.,	,	f(x)	= kx	-e	whe		,		9M	CO2	L-2
		· · · · · · · · · · · · · · · · · · ·			U	INIT.	- 								
6.	a)	Out of 800 families w	ith 5	childre	n ead	ch, h	now r	_ nany	wou	ıld yo	ou ex	pect to)		
		have (i) 3 boys (ii) eit			oys ((iii) a	tleas	t one	boy	/? As	sum	e equa			
		probabilities for boys	and gi	ris									6M	CO3	L-3

Code: 20AC41T

b) In a Normal distribution 7% of the items are under 35 and 89% are under 63. Determine the mean and variance of the distribution

6M CO3 L-3

OR

7. a) Average number of accidents on one day on a national highway is 1.6. Determine the probability that the number of accidents are (i) at least one (ii) Atmost one

6M CO3 L-3

b) In a sample of 1000 cases the mean of a certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal, find (i) how many score between 12 and 15? (ii) how many score above 18? (iii) how many score below 18?

6M CO3 L-3

UNIT-IV

8. a) The mean life of a sample of 10 electric bulbs was found to be 1456 hours with standard deviation of 423 hours. The second sample of 17 bulbs chosen from a different batch shoed a mean life of 1280 hours with standard deviation of 398 hours. Is there a significant difference between the means of two batches at 5% level of significance?

8M CO4 L-4

b) A random sample of 400 items is found to have mean 82 and Standard deviation of 18. Determine maximum error of estimation at 95% confidence interval. Also construct 95% confidence interval.

4M CO4 L-

OR

9. a) An oceanographer wants to whether the depth of the ocean in a certain region is 57.4 fathoms, as had previously been recorded. What can he conclude at the 0.05 level of significance, if readings taken at 40 random locations in the given region yielded a mean of 59.1 fathoms with standard deviation of 5.2 fathoms?

4M CO4

b) In a random sample of 1000 persons from town A, 400 are found to be consumers of wheat. In a sample of 800 from town B, 400 are found to be consumers of wheat. Do these data reveal a significant difference between town A and town B, so far as the proportion of wheat consumers is concerned? Consider level of significance as 1%.

8M CO4 L-4

UNIT-V

10. To compare two kinds of bumper guards, 6 of each kind were mounted on a car and then the car was run into a concrete wall. The following are the costs of repairs.

Guard I	107	148	123	165	102	119
Guard II	134	115	112	151	133	129

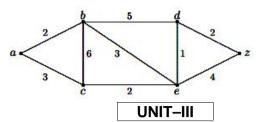
Use 0.01 level of significance to test whether the difference between two sample means is significant.

12M CO5 L-4

OR

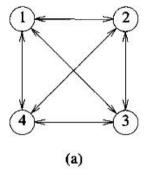
11. Mechanical engineers, testing a new welding technique, classified welds both with respect to appearance and an X-ray inspection. Test for performance with respect to appearance and X ray inspection are independent (consider level of significance as 5%)

Quality


		*	
X-Ray	Bad	Normal	Good
Bad	20	7	3
Normal	13	51	16
Good	7	12	21

12M CO₅ L-4

Hall Ticket Number: R-20 Code: 20A541T II B.Tech. II Semester Regular & Supplementary Examinations July 2023 **Design and Analysis of Algorithms** (Common to CSE, AI&DS and AI&ML) Max. Marks: 70 Time: 3 Hours ***** Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. In Part-A, each question carries **Two marks**. 3. Answer ALL the questions in Part-A and Part-B **PART-A** (Compulsory question) 1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$ CO BL a) Show that 5n+6 = O(n). CO₁ L3 CO₂ b) Give a recurrence for running time of merge sort. L2 c) What is the principle of optimality? CO₃ L1 d) Determine the minimum number of colors required to properly color the vertices of CO4 L2 the following graph. d e) State the Cook's theorem. CO5 L1 **PART-B** Answer five questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$) Marks CO BL UNIT-I L2 2. a) Formally define the asymptotic notations big-oh, big-omega and theta. Give an CO₁ example for each of the notations. 9M b) Let T(n) be the number of times "AITS Rajampet" is printed in the following CO1 L4 algorithm segment. Determine T(n) and represent it using theta notation. for (i = 1; i n; i = i++) do for (j=1; j n; j=j+2) do print" AITS Rajampet "; **3M** OR 3. a) How would you find connected components of a graph using disjoint set data CO₁ L3 4M structure? Explain with an example. b) Explain with pseudo code and a suitable example disjoint set union and find CO₁ L2 8M operations. What is weighting rule for union operation? UNIT-II 4. a) Sort the keys 50, 50, 80, 30, 40, 30, 20 in non-decreasing order by applying CO2 L3 quick sort. Give a recurrence for the worst-case running time of quick sort and represent its running time using theta notation. 7M b) Explain binary search algorithm with an example. CO2 L2 5M **OR** State fractional knapsack problem. Find an optimal solution to the fractional CO₂ L₃ 5. a) knapsack instance n=7, m=15, (p1, p2, ..., p7) = (1, 3, 5, 4, 1, 3, 2) and (w1, w2, ..., w7) = (5,10,15,7,8,9,4) by applying greedy algorithm. 7M


Code: 20A541T

b) Define Minimum Spanning Tree (MST). Find a MST of the following graph by CO2 L3 applying Prim's algorithm.

5M

6. a) Define travelling salesperson problem. Consider the directed graph and the edge cost matrices given below. Solve the given instance of travelling salesperson problem by applying a dynamic programming algorithm. Assume vertex 1 as the source. CO₃ L₃

9M

b) Define matrix chain multiplication problem.

3M CO3

OR

7. a) Give a dynamic programming-based algorithm to solve 0/1 knapsack problem and analyze its running time. Solve the following instance of 0/1 knapsack problem by applying your algorithm.

CO₃ L₃

L1

Item No	Weight (Kg)	Profit (Rs)
1	2	3
2	3	4
3	4	5
4	5	6

Knapsack capacity (W) = 5 Kg

9M

b) Define binary search tree. Draw all different binary search trees possible with keys 25, 15 and 35.

CO3 L2 3M

UNIT-IV

8. a) Explain the general method of backtracking.

4M CO4 L2

b) Give a backtracking solution to 8-queens problem.

8M CO4 L3

OR

- 9. a) Differentiate between FIFO and LC branch and bound techniques.
- 4M CO4 L2

L3

b) Explain briefly the main steps in an LC branch-and-bound solution to 0/1 knapsack problem.

CO4 8M

UNIT-V

10. a) Define complexity classes NP-hard and NP-complete. How to show that a problem is NP-hard?

CO5 L2

b) What is halting problem of the Turing machine? Determine the complexity class of halting problem.

CO5 L1 5M

OR

11. a) Define decision problem. Give three examples for decision problems which are in class NP but not in class P.

CO5 L2 4M

b) Define satisfiability problem. Design a nondeterministic algorithm to solve satisfiability problem.

CO5 L2 8M Hall Ticket Number :

Code: 20A542T

Il B.Tech. II Semester Regular & Supplementary Examinations July 2023

Formal Languages and Automata Theory

(Computer Science and Engineering)

Max. Marks: 70 Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. In Part-A, each question carries Two marks.
- 3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

- 1. Answer ALL the following short answer questions ($5 \times 2 = 10M$) CO BL
 - a) Write a note on applications of formal languages and automata CO1 L1
- b) Give English description of the language : b(a+b)*a CO2 L2
- c) How do we show the acceptance of CFL? CO3 L2
- d) Differentiate PDA and non-deterministic PDA. CO4 L2
- e) Define Turing Machine.

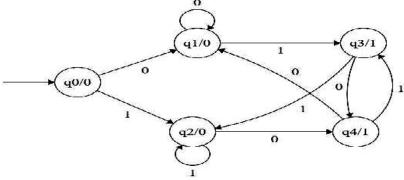
PART-B

Answer five questions by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$)

Marks CO BL

CO₅ L₁

UNIT-I


2. Construct a DFA equivalent to the NFA given by $M = (\{p,q,r,s\}, \{0,1\}, p, \{s\}),$ where is defined in the following table.

	0	1
р	{p,q}	{p}
q	{r }	{r}
r	{s }	-
S	{s }	{s}

12M CO1 L2

OR

- 3. a) Difference between Moore and Mealy Machines with their State transition diagram.
- 4M CO1 L1
- b) Convert the following Moore machine into Mealy Machine

8M CO1 L2

Code: 20A542T

UNIT-II

	01411-11			
a)	State and explain Arden's theorem	4M	CO2	L1
b)	Construct a NFA- equivalent to the regular expression			
	10 + (0 + 11)0* 1	8M	CO2	L2
	OR			
a)	Explain about pumping lemma of regular sets.	6M	CO2	L2
b)	Show that the language L={anbn/n>=1} is not regular.	6M	CO2	L2
	UNIT-III			
	Construct CFG, G=($\{S,A,B\}$, $\overline{\{a,b\},P,S\}$) with production set P as			
	S→aAbB; A→Ab/b; B→Ba/a to CNF	12M	CO3	L2
	OR			
a)	What is meant by ambiguous grammar? Test whether the grammar is ambiguous or not.			
	$S \rightarrow A \mid B$ $A \rightarrow aAb \mid ab$ $B \rightarrow abB \mid$	6M	CO3	L2
b)	Simplify the following CFG			
	$S \rightarrow A/0C1$ $A \rightarrow B/01/10$ $C \rightarrow CD/$	6M	CO3	L3
	UNIT-IV			
a)	Design PDA for the language $L=\{a^nb^n/n>=1\}$	6M	CO4	L2
b)	Construct PDA for the CFG			
	S→aSb S→ab	6M	CO4	L2
	OR			
a)	Write short notes on DPDA.	4M	CO4	L1
b)	Design PDA for the language L= {WcWr / W (0+1)*}	8M	CO4	L3
	UNIT-V			
a)	Design Turing machine to find 2's complement of a binary			
	number	6M	CO5	L2
b)	Write a short note on Universal Turing Machine.	6M	CO5	L1
	OR			
a)	Explain types of Turing machine	6M	CO5	L1
b)	Write short notes on:			
	i) Halting Problem of Turing Machine			
	ii) Post-Correspondence Problem	6M	CO5	L1
	*** End ***			
	b) a)	a) State and explain Arden's theorem b) Construct a NFA- equivalent to the regular expression 10 + (0 + 11)0* 1 OR a) Explain about pumping lemma of regular sets. b) Show that the language L={a^bb^n/n>=1} is not regular. UNIT-III Construct CFG, G=({S,A,B}, {a,b},P,S) with production set P as S→aAbB; A→Ab/b; B→Ba/a to CNF OR a) What is meant by ambiguous grammar? Test whether the grammar is ambiguous or not. S→A B A→aAb ab B→ abB b) Simplify the following CFG S→A/0C1 A→B/01/10 C→CD/ UNIT-IV a) Design PDA for the language L={a^bb^n/n>=1} b) Construct PDA for the CFG S→aSb S→ab OR a) Write short notes on DPDA. b) Design PDA for the language L= {WcWr / W (0+1)*} UNIT-V a) Design Turing machine to find 2's complement of a binary number b) Write a short note on Universal Turing Machine. OR a) Explain types of Turing machine b) Write short notes on: i) Halting Problem of Turing Machine ii) Post-Correspondence Problem	a) State and explain Arden's theorem b) Construct a NFA- equivalent to the regular expression 10 + (0 + 11)0* 1 OR a) Explain about pumping lemma of regular sets. 6M b) Show that the language L={a^bb^n/n>=1} is not regular. Construct CFG, G=({S,A,B}, {a,b},P,S) with production set P as S→aAbB; A→Ab/b; B→Ba/a to CNF OR a) What is meant by ambiguous grammar? Test whether the grammar is ambiguous or not. S→A B A→aAb ab B→ abB 6M b) Simplify the following CFG S→A/0C1 A→B/01/10 C→CD/ OR a) Design PDA for the language L={a^bb^n/n>=1} 6M b) Construct PDA for the CFG S→aSb S→ab OR a) Write short notes on DPDA. 4M b) Design PDA for the language L={WcWr / W (0+1)*} UNIT-V a) Design Turing machine to find 2's complement of a binary number 6M b) Write a short note on Universal Turing Machine. OR a) Explain types of Turing machine 6M b) Write short notes on: i) Halting Problem of Turing Machine ii) Post-Correspondence Problem 6M	a) State and explain Arden's theorem b) Construct a NFA- equivalent to the regular expression 10 + (0 + 11)0* 1 BM CO2 OR a) Explain about pumping lemma of regular sets. b) Show that the language L=(a*b*/n>=1} is not regular. Construct CFG, G=({S,A,B}, {a,b},P,S) with production set Pass S→aAbB; A→Ab/b; B→Ba/a to CNF OR a) What is meant by ambiguous grammar? Test whether the grammar is ambiguous or not. S→A B A→aAb ab B→abB 6M CO3 b) Simplify the following CFG S→A/OC1 A→B/O1/10 C→CD/ Design PDA for the language L={a*b*/n>=1} Design PDA for the CFG S→aSb S→ab OR a) Write short notes on DPDA. b) Design PDA for the language L={WcWr / W (0+1)*} WINIT-V a) Design Turing machine to find 2's complement of a binary number b) Write a short note on Universal Turing Machine. b) Write short notes on: i) Halting Problem of Turing Machine ii) Post-Correspondence Problem 6M CO5