	H	all Ticket Nu	mber	••												_
	<u> </u>	ode: 20AC41	т											R-2	20	
				ch. II	Sem	ester	Reau	ılar	Exan	ninc	ntior	ns Au	igust 2	022		
							ability						300			
							to CE									
	Mo	ax. Marks: 7	0				de etc.		ata ata ata					Time: 3	3 Hou	rs
	No	te: 1. Questi	on Da	nor c	onciet	s of ty		**** •c (P		and	Dai	rt_R)				
	INU	2. In Part		1			1	``		anu	1 a	(-D)				
		3. Answe		-						rt-E	3					
							P A	ART	<u>-A</u>							
						(C	ompul	sory	quest	ion)						
1./	Ansv	ver ALL the	follo	wing	shor	t ans	wer qı	Jest	ions	(5 X	2 = 10	OM)		со	Blooms Level
a)	The	aerokopter A	\K 1-	3 is a	n ultra	a-light	weight	mar	nned k	kit he	elico	pter w	<i>v</i> ith a hi	gh rotor	1	L1
	•	peed. A sam	•				•				•		•	led 204,		
		205, 211, 20											•		_	
b)		e the additio			•	robab	ility. E	xplai	in it if	the	e ev	ents a	are (i) r	nutually	2	L1
\sim		usive and (ii) e the conditio				omial	dictrib	utio	n con	ho i	nnr	ovimo	tod by	Poisson	3	L1
0)		ibution.				Iomai	uistrib	ulio	n can		аррі	UNITIO	lieu by	10133011	5	
d)		uss about the	e erro	ors tha	t occu	ur in sa	ampling	j .							4	L1
e)		e the test stat						-	vo vari	ance	es.				5	L1
,	PART-B															
	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 60$ Marks)															
		Ũ	-		·			-						Marks	СО	Blooms Level
						U	INIT-I									Level
2.		Calculate th	e me	an, m	edian	and r	node f	or th	ne freq	uen	cy d	istribu	ition giv	en		
		below:					1	1						7		
		Height (nm) 20)5-245		5-285	285-3		325-3	365	36	5-405	Total	-		
		Frequency	,	3		11	23		9			4	50	12M	1	L2
_							OR									
3.	a)	Find Karl Pe of the follow				ent of	correla	tion	betwe	en s	sale	s and	expens	es		
		Firm	1	2	3	4	5	6	7		8	9	10			
		Sales	50	50	55	60	65	65	5 65	5	60	60	50			
		Expenses	11	13	14	16	16	15	5 15	5	14	13	13	6M	1	L3
	b)	Calculate S						coeff	icient	betv	veer	n adve	ertiseme	ent		
		cost and sal	1	om the	e follov	wing d	ata:						_			
		Advertisem		39	65 6	52 9	0 82	75	5 25	98	3	6 78	5			
		cost ('000 l Sales (Lak		47	53 5	58 8	6 62	68	8 60	91	5	1 84	_	6M	1	L3
		Oales (Lak	113)	77			0 02	00	, 00	51	0			OW	•	LU
						U	NIT-II									
4.	a)	Two cards a	re dr	awn a	t rand	L		ordir	nary d	eck	of 52	2 card	s. What	is		
		the probabili	•	•	•											
		(i) the first ca														
		(ii) the first c			•		ore the	e sec	cond c	ard i	s dr	awn?		6M	2	
	b)	State and pr	ove E	Baye's	theoi	rem.								6M	2	L2
							OR									

5.		A rando	m variab	les X l	has the	followin	g probal	oility fun	ction:					
		x	0	1	2	3	4	5	6	7				
		P(x)	0	Κ	2K	2K	3K	K ²	2K ²	7K ² +K				
		Determi	ne: (i) K	(ii) Ev	aluate F	P(X<6) (iii) Evalu	uate P(0	<x<5)< td=""><td>(iv) mear</td><td>n and</td><td></td><td></td><td></td></x<5)<>	(iv) mear	n and			
		variance	;		r							12	C02	L5
_						UNI								
6.	a)	Fit a bin	omial di							7				
			_	x: f:	0 10		$\frac{2}{2}$ 3		5	_		6M	3	L3
	b)	Given a	random		-		30 25 Dormal o		10 20 with	_ mean 16	2 and	0101	0	LU
	D)	variance												
		than 16.			-						,	6M	3	L3
							DR							
7.	a)	lf a r	andom	varia	ble X	follow	s Pois	son di	istributi	on such	that			
		P(X=1)	= P(X)	= 2), 1	find (i)	the me	ean and	d varian	ce of	the distr	ibution			
		(ii) <i>P</i> (<i>X</i>	= 0).									6M	3	L3
	b)	An autor	matic ma	achine	fills disti	lled wat	er in 500) ml bott	les. Ac	tual volum	les are			
		normally	distribut	ted abo	out a me	an of 50	0 ml, an	d standa	rd devi	ation 20m				
		.,				tles are	filled w	ith wate	r outsic	le the tole	erance			
			of 475 m											
		. ,	hat valu ottles m					n need to	o be ad	ljusted if §	99% of	6M	3	L3
		แเคม		usi de								OIVI	5	LJ
8.	a)	A rando	om sam	ole of	size 1			mapo	pulatior	n with sta	andard			
•								-	-	truct a (i				
		(ii) 98%	confide	nce inte	erval for	the pop	oulation	mean.				8M	4	L3
	b)	Write the	e procec	dure in	testing	the hyp	othesis.					4M	4	L1
							DR							
9.	a)						•	-		ectives in	-			
		0	•			-				e at leas will we n				
		(i) we ha						•	•					
		(ii) we ki				• •		•				6M	4	L3
	b)	()			• •					educed by	/ more			
	~)									ard wire y				
		mean o	f 0.136	ohm a	and sta	ndard o	deviatior	0.004	ohm, a	and anoth	ner 32			
					-	-				n and sta				
			n 0.005	ohm.	At 0.05	5 level	of signif	icance,	does t	his suppo	ort the	CM	1	1.2
		claim?			ſ	UNI	т_V					6M	4	L3
10.		Two hor	ses A a	nd B w	vere tes			the tim	e (in se	econds) to	n run a			
10.							•			wo horse				
		the sam				U								
				Hors	e A 28	3 30	32 33	33 29	34				_	
				Hors	se B 29		30 24	27 29)			12M	5	L3
11.		From th	e follow	vina da	ta find	-	DR r thoro	ie anv d	signific	ant liking	in the			
11.		habit of		•				•	•	•				
			t drinks		Cler	•		achers		Officers	5			
			Pepsi		10			25		65				
			umsup		15			30		65				
		I F	anta		50			60		30		12	5	11

60

50

Fanta

5

L1

12

30

Hall Ticket Number :			
Code: 20A541T		-20	
II B.Tech. II Semester Regular Examinations Augus	† 2022		
Design and Analysis of Algorithms (Common to CSE and AI&DS)			
Max. Marks: 70	Time	: 3 Ho	urs
********* Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two mark.			
3. Answer ALL the questions in Part-A and Part-B			
PART-A			
(Compulsory question)			
1. Answer ALL the following short answer questions (5 X 2 = 10	M) C	.()	Blooms Level
a) Define time complexity and space complexity.	C	D 1	L1
b) What is meant by Divide – and – Conquer approach?	C	D 2	L1
 c) Define the Dynamic 0/1 Knapsack Problem 	C	O3	L1
d) Write the Control Abstraction of iterative Backtracking me	thod. Co	O4	L1
e) State Cook's theorem.	C	O5	L1
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x 2	$12 = 60 \mathrm{Max}$	rks)	
	Marks	CO	Blooms Level
UNIT–I			
a) Using step count find the time complexity of sum of '	n'		
natural numbers	6M	CO1	L3
b) Describe find and union operation on sets	6M	CO1	L1
OR		CO1	
a) What is pseudo-code? Explain with an example.	3M	CO1	L1,2
b) Describe best case, average case and worst case	se		
efficiency of an algorithm?		CO1	L1,2
UNIT–II			
a) Show the result of running Quick sorting technique of	on		
the sequence 38,27,43,3,9,82,10	6M	CO2	L4
b) Derive the Average case time complexity of Quid	ck		
sorting technique.	6M	CO2	L3
OR			

5.	a)	State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits (P1,P2,P3,P4,P5) = (20,15,10,5,1) and deadlines			
		(d1,d2,d3,d4,d5) =(2,2,1,3,3).	6M	CO2	L4
	b)	Write the Binary search algorithm and analyze for its best, worst and average case time complexity.	6M	CO2	L3
				••-	
6.		Draw an Optimal Binary Search Tree for n=4 identifiers			
		(a1,a2,a3,a4) = (do, if, read, while) P(1:4)=(3,3,1,1) and			
		Q(0:4)=(2,3,1,1,1).	12M	CO3	L4
		OR			
7.	a)	Explain how Matrix – chain Multiplication problem can be solved using dynamic programming with suitable example.	6M	CO3	L3
	h)	Explain Reliability Design Problem with suitable example.		CO3	L3 L2
	0)	UNIT-IV	0111	005	LZ
8.	a)	What is a Hamiltonian Cycle? Explain how to find			
	,	Hamiltonian path and cycle using backtracking algorithm.	6M	CO4	L2
	b)	Give the statement of sum -of subsets problem. Find all			
		sum of subsets for n=4, (w1, w2, w3, w4) = $(11, 13, 24, 13, 24)$			
		7) and M=31.Draw the portion of the state space tree	6M		
		using fixed – tuple sized approach.	OIVI	CO4	L4
_		OR			
9.	a)	Discuss the 4 – queen's problem. Draw the portion of the			
		state space tree for $n = 4$ queens using backtracking algorithm.	6M	CO4	L3
	h)	Write Control Abstraction of Least – Cost(LC) Search.		CO4	L3 L2
	~)		om	004	LZ
10.	a)	Define P, NP, NP-Complete and NP-Hard	6M	CO5	L1
		Write nondeterministic algorithm for sorting of an array.		CO5	L3
		OR			
11.	a)	Explain the satisfiability problem.	6M	CO5	L2
	b)	Distinguish between deterministic and non deterministic			
		algorithm.	6M	CO5	L2
		*** End ***			

	Hall Ticket Number :					R-2	0]
	Code: 20A542T		anair	ation				
	II B.Tech. II Semester F Formal Langua							
	(Computer	-			-			
	Max. Marks: 70	*******		0	57	Time: 3	8 Hours	5
	Note: 1. Question Paper consists of two 2. In Part-A, each question carrie 3. Answer ALL the questions in	es Two mar	k.		-B)			
	-	PART-A						
	(Co	mpulsory qu	estio	ı)				
1	 Answer ALL the following short answer 	er questions	5 (5 X 2 =	= 10M)		CO	Bloom
a)	Distinguish between NFA and DFA						CO1	L1
	Define recursive definition of regular	r expressio	on.				CO2	L1
;)	Define Right Linear and Left Linear examples.	•		rmally	and als	o provide	CO3	L2
d)	Define Push Down Automata (PDA) r	nathematio	cally	with no	eat block	diagram.	CO4	L2
e)	Explain about the Post's Correspond	dence Pro	blem	1			CO5	L3
-		PART-B						
	Answer <i>five</i> questions by choosing	one question	n fron	n each u	unit (5 x 1	2 = 60 Mark		
						Marks	СО	Blooms Level
	U	NIT–I						
	2. Construct Minimized Finite a		for F	SM ai	ven belov	W		
	0	1		enn gi				
	Start A 0 B 1 0 B 1 0 0 0 0 0 0 0 0 0 0		0					
		G 0	0	H		12M	CO1	L2
						1 2 1 1 1		LZ

OR

3. a) Design a Moore machine to determine the residue mod5 for each binary string treated as integer?

6M CO1 L4

b) Eliminate €-moves for the given NFA-€.

6M CO1 L3

					Т		Code: 2	20A5421	[
			UN	IIT–II					
4.		Construct a DFA $(0+1)^{*}(00+11)(0+1)^{*}$	for	the	regular	expression	12M	CO2	L2
			С	R					
5.	a)	Describe a pumping lease its applications?	emma	for reg	gular langı	uages. What		CO3	L3
	b)	Show that $L = \{a^n b^n/n\}$	>=1} i	s not re	egular		6M	CO3	L3
			UN	IT–III]				
6.		Construct regular grad	mmar	for the	given DF	A.			
		$\rightarrow q_1$ a a		b	a, q ₄	ь ў			
		4	q ₃	Ƴ ª			12M	CO3	L4
			C	R					
7.		Convert the following S AA/a			NF.				
		A SS/b			-		12M	CO3	L4
			UN	IT–IV					
8.		Design a Pushdown A	Autom	ata (PI	DA) for a g	given CFL			
		$L=\{a^nb^n:n\ge 0\}$					12M	CO4	L3
			C	R					
9.		Construct PDA for the S 0BB, B 0S 1	U	n CFG.					
		Test whether 010000	is acc	epted	or not?		12M	CO4	L3
			UN	IT–V					
10.		Construct Turing Mac unary numbers f(X,Y)	= X+`	Y	ement ad	dition of two	12M	CO5	L3
			-)R					
11.		Describe the followingi. Context Sensitiviti.ii. Decidability of P	ve Lan Probler	guage ns (4N	(4M) 1)	es.	4014		
		iii. Universal Turing	•	1INE (4 *** End	,		12M	CO5	L3

Hall Ticket Number :		1	
Code: 20A445T	R-20)	
II B.Tech. II Semester Regular Examinations August 20	22		
Microprocessor and Interfacing (Common to CSE and AI&DS)			
Max. Marks: 70	Time: 3	Hours	
********* Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two mark.			
3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$	CO	Bloo	-
a) List the control flags in 8086 microprocessor	CO1	Lev L1	
b) Discuss the significance of ALE pin in 8086	CO2	2 L2	2
c) Describe CWR format of BSR mode of 8255?	CO3	3 L2	2
d) List different modes of 8253?	CO4	Lí	1
e) Name any two features of 80286?	CO5	5 L1	1
PART-B			
Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 =$	60 Mark	5)	
	Marks	со	Bloo
UNIT-I			Lev
Draw the internal block diagram of 8086 microprocesso	r		
and explain.	12M	CO1	
OR			
a) Develop an alp to sort the N byte numbers in ascending)		
order.	6M	CO1	
b) Develop an alp to reverse the string of 10 Words using	-		
string instructions.	DIVI	CO1	
UNIT-II Analyze the minimum mode memory read operation with	`		
relevant time cycle diagram	12M	CO2	
OR		002	
Justify is the significance of DMA and explain interfacing	3		
diagram with 8086 processor to transfer the data.	, 12M	CO2	
UNIT-III			
a) Explain the function of ports in 8255 PPI	6M	CO3	
b) Develop interfacing circuit to rotate stepper motor in clock	K		
wise direction continuously	6M	CO3	
OR			

		C	ode: 20	DA445T	
7.		With neat sketch explain the architecture of 8259 PIC	12M	CO3	L2
		UNIT–IV			
8.		Explain the architecture of 8253 with neat diagram.	12M	CO4	L2
		OR			
9.	a)	Show the format of data transfer in asynchronous data	4M	CO4	L3
	b)	Justify the necessity of TTL to RS232 conversion discuss			
		how it is converted.	8M	CO4	L5
		UNIT–V			
10.	a)	Differentiate real and protection mode in 80386	4M	CO5	L2
	b)	Describe the features of 80386	8M	CO5	L1
		OR			
11.		Summarize the architectural features of Pentium and			
		Pentium pro processors	12M	CO5	L5
		*** End ***			

		Hall Ticket Number :															
		Code: 20A543T										<u>.</u>			R-20		
		ll B.Tech	. II S	eme			-				ions	Αυί	gust :	2022			
				IC	-			g Sy : CSE a			ואר						
		Max. Marks: 70			.0111	non		55L U	na .		557			Tir	ne: 3 F	lours	
		Note: 1. Question Pape	r cor	nciete	oft	won		***** (Part	- 1 0	and I	Part_	B)					
		2. In Part-A, eacl				-		-			ai t-	D)					
		3. Answer ALL	the q	uesti	ions	in P a			Par	t-B							
					(omr		<u>RT-A</u> ry qu	estic	n)							
					(C	20111F	Juiso	ry qu	con	, 11 <i>)</i>							
	1. /	Answer ALL the follow	ving s	shor	t ans	swer	que	stions	5	(5	X 2 =	= 10	M)		СО	Bloor Leve	
	a)	What are the vario	us ty	ypes	sof	syst	em	calls	?						CO1		L1
	b)	What is process s	sync	hror	nizat	tion'	? W	hat	will	be	the	res	sult v	vhen			
		processes are not	syno	chro	nize	ed?									CO2		L1
	c)	List out the differen					onti	guou	is r	nem	nory	loc	ation	and			
	N	non-contiguous me		•				•							CO3		L4
	-	What is a file and w													CO4		L1
	e)	What are the vario	us v	vays	stor	pro		•	ne F	SC?					CO5		L1
		Answer <i>five</i> questi	ons ł	ov ch	oosir	וס חו		RT-B estion	fro	m ea	ch u	nit (5 x 12	2 = 60 N	Marks)		
		This wer jove quest		<i>y</i> 011	00011	-9	ie qu	0.000			iell u				, , , , , , , , , , , , , , , , , , , ,		51
				ľ				_							Marks	CO	Blooms Level
~	、	–				INIT			~						014		
2.		Explain about sto	-												6M	CO1	L5
	b)						•		•								
		diagram explain t and vice-versa.	liie	llall	SILIC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UIII	usei	111	oue	10	Ken		loue	6M	CO1	L1, L2
						OI	R								0.01	COT	LI, LZ
3.	a)	Explain above sc	hed	ulin	a ale			S.							6M	CO1	L5
0.	b)	· · · · · ·			•	•			e of	far	oroc	ess	_		6M		L5 L5
	,			-	U	NIT	-11			•					onn	COT	LD
4.	a)	Assume your OS all students. If or students cannot updations will no others can read. gives priority ove wait if the section	ne s rea t be Wri r the	stud ad vis ite p e re	lent or sible oseu ade	trie writ to ido rs; i	s e e a othe cod .e.,	ditine it th ers. I e us none	g/w e But ing e of	ritin sam the Sei the	g th ne en w map e rea	ne f time /hile phor	ile, c e or e rea res w	other the ding hich	6M	CO2	L4
			13 0	June	Jing	, op				uun	·y·					002	L

		Cod	e: 20A	543T	
	b)	The Singles-Badminton game is designed only for 2 players. If one player is playing, the other player has to wait for his turn and vice versa. Solve this problem with appropriate algorithm	014		
		and justify the same.	6M	CO2	L5
F	c)	OR			
э.		Write a short note on models of multithreading in process management.	5M	CO2	L2
	b)	Discuss the approaches to implement multiple processors scheduling in OS.	7M	CO2	L6
0	-)	UNIT-III			
6.	a)	Explain about resource allocation graph. Give the examples for resource allocation graph with cycle and without cycle.	6M	CO3	L5
	b)	Discuss Banker's algorithm with an example.	6M	CO3	L6
7.	a)	Illustrate the concept which helps to avoid external fragmentation with example.	6M	CO3	L2
	b)	Consider a system with "Six" partitions in the memory in which "three" partitions consumes the processes inside to them and "three" partitions are holes. The memory structure is given below:			
		450 MB 860 MB 1350 MB 2360MB 4050MB 1350MB The processes enter the system whose size is as given (in order): 240MB, 480MB, 1050MB, and 780MB. Implement "First Fit", "Best Fit" and "Worst Fit" algorithm and determine which algorithm can optimally satisfy this requirement. Justify your answer with a proper explanation.	6M	CO3	L6
0	-)	UNIT-IV			
ð.	a) b)	Discuss file mounting in-detail.		CO4	L6
_	b)	Write about various file accessing methods.		CO4	L2
9.	a)	0 0		CO4	L2
	b)	Explain about various RAID levels UNIT-V	6M	CO4	L5
10.	a)	Illustrate the steps involved in DMA with a neat diagram.	6M	CO5	L2
	b)	Explain the life cycle of an I/O request. OR	6M	CO5	L5
11.	a)	Write about computer security classifications.	6M	CO5	L1, L2
	b)	Describe in-detail how firewalls protect systems and networks.	6M	CO5	L4