Code: 20A445T

II B.Tech. II Semester Regular \& Supplementary Examinations July 2023

Microprocessor and Interfacing

(Common to CSE, AI\&DS and AI\&ML)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. In Part-A, each question carries Two marks.
 3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Illustrate the following Arithmetic instructions of 8086 i) AAA ii) MUL CO1 L2
b) Analyze the different types of command words used in 8259? CO2 L6
c) What are the modes of operation supported by 8255? CO3 L6
d) What is USART? CO4 L6
e) What are the different registers in 80286? CO5

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Explain the functions of different registers in 8086. Also discuss the flag register contents.

6M CO1 L2
b) How procedure CALL and RET take place in 8086. Explain CALL and RET instructions in 8086 instruction set.

6M CO1 L2

OR

3. Explain branch instructions of 8086 with examples. 12 M CO1 L2

UNIT-II

4. a) With the help of basic cell explain SRAM and DRAM?

6M CO2 L6
b) With a neat pin diagram explain the minimum mode operation of 8086 .
$6 \mathrm{M} \mathrm{CO2}$ L2

OR

5. a) What is the purpose of ALE, BHE, DT/R and DEN pins of 8086? Show their timing in the system bus cycle of 8086 ?
$6 \mathrm{M} \mathrm{CO2}$ L2
b) Draw and discuss the status registers of 8257?
$6 \mathrm{M} \mathrm{CO2}$ L6
UNIT-III
6. a) Draw and explain the interfacing of cascaded 8259s with 8086. 6M CO3 L6b) Write an ALP in 8086 to generate a symmetrical square waveform with 1 KHz frequency? Give the necessary circuit setupwith a DAC?
6M CO3 L6
OR
7. a) Describe the interrupt structure in 8086 4M CO3 L6
b) Which interrupt type is associated with TF flag? What is its vector address? 4M CO3 L6
c) What is meant by vector address? How the vector address is used to service the interrupts? 4M CO3 L6
UNIT-IV
8. a) Give the specifications of RS232C? 4M CO4 L6
b) Explain about line driver and line receiver used in serial communication? 4M CO4 L6
c) Give the status register of 8251 and explain each bit. $4 \mathrm{M} \mathrm{CO4}$ L6
OR
9. Draw and explain the architecture of 8251. 12M CO4 L6
UNIT-V
10. a) Draw and discuss the register organization of 80286 .6M CO5 L2
b) What are the salient features of protected virtual address mode of 80386 ?

$6 \mathrm{M} \mathrm{CO5}$ L2
11. a) Draw and discuss the flag register of 80386 in details. 6 M co5 L2
b) Enumerate the salient features of Pentium and Pentium Pro. 6 M co5 L2
ORL2
OR L2 *** End ***
\square

Code: 20A543T

|| B.Tech. || Semester Regular \& Supplementary Examinations July 2023

Operating Systems

(Common to CSE, AI\&DS and AI\&ML)
Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Define the term "Inter process Communication". CO1 L1
b) List out the advantages of using multithreaded programming. CO2 L1
c) What do you mean by Demand Paging? CO3 L1
d) Explain the importance of disk scheduling. $\mathrm{CO} \quad \mathrm{L} 2$
e) Discuss the principles of protection in a modern computer system L2

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Explain the Dual-Mode operation of an operating system.
b) What are the three main purposes of an operating system?

OR

3. a) Consider Four jobs to be executed on a single processor system arrive at time 0 in the order A, B, C, D. Their burst CPU time requirements are 4, 1, 8, 1 time units respectively. Apply FCFS and SJF CPU scheduling algorithms to calculate average waiting time, average turnaround time.
b) Explain the criteria for evaluating the CPU scheduling algorithms? Why do we need it?

UNIT-II

4. a) Write in detail about the thread libraries.

4 M CO2 L2
b) Apply semaphores to provide synchronization for Producer Consumer problem.

8M CO2 L3

OR

5. a) Discuss Mutual-exclusion implementation with Test And Set instruction.

6 M CO 2 L 2
b) What is a Semaphore? Explain various operations defined on it.

UNIT-III

6. a) Apply first-fit, best-fit, and worst-fit algorithms to place processes of size 115 $\mathrm{KB}, 500 \mathrm{~KB}, 358 \mathrm{~KB}, 200 \mathrm{~KB}$, and 375 KB (in order) for the given six memory
partitions of $300 \mathrm{~KB}, 600 \mathrm{~KB}, 350 \mathrm{~KB}, 200 \mathrm{~KB}, 750 \mathrm{~KB}$, and 125 KB (in order).

6 M CO 3 L 3
b) Apply FIFO and LRU page replacement algorithms to calculate number of page faults would occur by consider the following page reference string with five page frames: $1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6$.

OR

7. a) Explain in detail about deadlock detection Techniques.
b) Consider a system with five processes P0 through P4 and three resource types A, B, and C. Resource type A has ten instances, resource type B has five instances, and resource type C has seven instances. Suppose, at time TO, the following snapshot of the system has been taken:

	Allocation				Max				Available		
	A	B	C	A	B	C	A	B	C		
P0	0	1	0	7	5	3	3	3	2		
P1	2	0	0		3	2	2				
P2	3	0	2		9	0	2				
P3	2	1	1		2	2	2				
P4	0	0	2	4	3	3					

Apply safety algorithm to find out whether the system is in safe state or not? UNIT-IV
8. a) Discuss the advantages and disadvantages of disk space allocation methods.
b) Apply FCFS, SSTF and SCAN disk-scheduling algorithms to calculate total distance (in cylinders) that the disk arm moves to satisfy all the pending requests. The queue of pending requests, in
FIFO order is: $2,069,1,212,2,296,2,800,544,1,618,356,1,523,4,965$, and 368. Let as assume that a disk drive has 5,000 cylinders, numbered 0 to 4,999 . The drive is currently serving a request at cylinder 2,150 , and the previous request was at cylinder 1,805 .

8M CO4

OR

9. a) Write short notes on
i. File Attributes ii. File System

4M CO4 L2
b) Apply LOOK, C-SCAN and C-LOOK disk-scheduling algorithms to calculate total distance (in cylinders) that the disk arm moves to satisfy all the pending requests. The queue of pending requests, in FIFO order, is: $86,147,91,177$, $94,150,102,175$, and 130. Let as assume that a disk drive has 200 cylinders, numbered 0 to 199. The drive is currently serving a request at cylinder 143, and the previous request was at cylinder 125.

UNIT-V

10. a) What is access matrix? Explain the different implementations of access matrix
b) Describe in detail how firewalls protect systems \& networks.

6 M CO5 L2
$6 \mathrm{M} \mathrm{CO5}$ L2

OR

11. a) Explain the following program threats.
i) Trojan horse ii) Trap door iii) Stack and Buffer overflow

6 M CO5 L2
b) Explain the computer-security classifications.
|| B.Tech. II Semester Regular \& Supplementary Examinations July 2023

Probability and Statistics

(Common to CE, ME, CSE, AI\&DS and AI\&ML)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL

a) Write the formula for Rank correlation coefficient with repeated ranks.

CO1 L1
b) Two cards are drawn from a well shuffled pack of cards. Find probability that they are both aces if the first card is (i) replaced (ii) not replaced

CO2 L2
c) If the mean of a Poisson variable is 1.8, then find $P(X>1)$ CO3 L3
d) Define Type-I and Type-II Errors. CO4 L3
e) Explain briefly the Variance Ratio test(F-Test) CO5 L2

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL

UNIT-I

2. Calculate Mean, Median and Mode from the following data.

Class interval	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Frequency	5	9	13	21	20	15	8	3

OR
3. Find Karl Pearson's coefficient of correlation from the following data

Wages	100	101	102	102	100	99	97	98	96	95
Cost of living	98	99	99	97	95	92	95	94	90	91

UNIT-II

4. a) State Baye's Theorem

2 M CO L-1
b) In a bolt factory machines A, B, C manufacture $20 \%, 30 \%$ and 50% of the total of their output and $6 \%, 3 \%$ and 2% are defective. A bolt is drawn at random and found to be defective. Find the probabilities that is manufactured from (i) Machine A (ii) Machine B (iii) Machine C

10M CO2 L-3

OR

5. a) A random variable X is defined as the sum of the numbers on the faces when two dice are thrown. Construct Probability distribution table.

3 M CO2 L-3
 (i) k (ii) Mean (iii) Variance

UNIT-III

6. a) Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) either 2 or 3 boys (iii) atleast one boy? Assume equal probabilities for boys and girls
b) In a Normal distribution 7% of the items are under 35 and 89% are under 63. Determine the mean and variance of the distribution

OR

7. a) Average number of accidents on one day on a national highway is 1.6 . Determine the probability that the number of accidents are (i) at least one (ii) Atmost one
b) In a sample of 1000 cases the mean of a certain test is 14 and standard deviation is 2.5.Assuming the distribution to be normal, find (i) how many score between 12 and 15 ? (ii) how many score above 18 ? (iii) how many score below 18 ?

UNIT-IV

8. a) The mean life of a sample of 10 electric bulbs was found to be 1456 hours with standard deviation of 423 hours. The second sample of 17 bulbs chosen from a different batch shoed a mean life of 1280 hours with standard deviation of 398 hours. Is there a significant difference between the means of two batches at 5% level of significance?
b) A random sample of 400 items is found to have mean 82 and Standard deviation of 18 . Determine maximum error of estimation at 95% confidence interval. Also construct 95% confidence interval.

OR

9. a) An oceanographer wants to whether the depth of the ocean in a certain region is 57.4 fathoms, as had previously been recorded. What can he conclude at the 0.05 level of significance, if readings taken at 40 random locations in the given region yielded a mean of 59.1 fathoms with standard deviation of 5.2 fathoms?
b) In a random sample of 1000 persons from town A, 400 are found to be consumers of wheat. In a sample of 800 from town B, 400 are found to be consumers of wheat. Do these data reveal a significant difference between town A and town B, so far as the proportion of wheat consumers is concerned? Consider level of significance as 1%.

UNIT-V
10. To compare two kinds of bumper guards, 6 of each kind were mounted on a car and then the car was run into a concrete wall. The following are the costs of repairs.

Guard I	107	148	123	165	102	119
Guard II	134	115	112	151	133	129

Use 0.01 level of significance to test whether the difference between two sample means is significant.

OR

11. Mechanical engineers, testing a new welding technique, classified welds both with respect to appearance and an X-ray inspection. Test for performance with respect to appearance and X ray inspection are independent (consider level of significance as 5\%)

Quality

X-Ray	Bad	Normal	Good
Bad	20	7	3
Normal	13	51	16
Good	7	12	21

$6 \mathrm{M} \mathrm{CO} ~ \mathrm{~L}-3$

6 M CO3 L-3

6 M CO3 L-3

8 M CO4 L-4

4M CO4 L-4

4 M CO

8M CO4 L-4

12 M CO5 L-4
*** End ***

Code: 20A541T
\square
|| B.Tech. || Semester Regular \& Supplementary Examinations July 2023
Design and Analysis of Algorithms
(Common to CSE, AI\&DS and AI\&ML)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Show that $5 n+6=O(n)$. CO1 L3
b) Give a recurrence for running time of merge sort. CO L2
c) What is the principle of optimality? $\mathrm{CO3}$ L1
d) Determine the minimum number of colors required to properly color the vertices of $\mathrm{CO} \quad \mathrm{L} 2$ the following graph.

e) State the Cook's theorem.

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12 \mathbf{= 6 0}$ Marks)

Marks CO

UNIT-I

2. a) Formally define the asymptotic notations big-oh, big-omega and theta. Give an example for each of the notations.
b) Let $\mathrm{T}(\mathrm{n})$ be the number of times "AITS Rajampet" is printed in the following algorithm segment. Determine $\mathrm{T}(\mathrm{n})$ and represent it using theta notation.

$$
\begin{aligned}
& \text { for (} \mathrm{i}=1 ; \mathrm{i} \leq \mathrm{n} ; \mathrm{i}=\mathrm{i}++\mathrm{+}) \text { do } \\
& \quad \text { for }(\mathrm{j}=1 ; \mathrm{j} \leq \mathrm{n} ; \mathrm{j}=\mathrm{j}+2) \text { do }
\end{aligned}
$$ print" AITS Rajampet ";

3. a) How would you find connected components of a graph using disjoint set data			
structure? Explain with an example.	4 M	CO 1	L 3
b) Explain with pseudo code and a suitable example disjoint set union and find			
operations. What is weighting rule for union operation?			

4. a) Sort the keys $50,50,80,30,40,30,20$ in non-decreasing order by applying quick sort. Give a recurrence for the worst-case running time of quick sort and represent its running time using theta notation.
b) Explain binary search algorithm with an example.

OR
5. a) State fractional knapsack problem. Find an optimal solution to the fractional knapsack instance $n=7, m=15,(p 1, p 2, \ldots, p 7)=(1,3,5,4,1,3,2)$ and $(\mathrm{w} 1, \mathrm{w} 2, \ldots, \mathrm{w} 7)=(5,10,15,7,8,9,4)$ by applying greedy algorithm.

CO2 L3
b) Define Minimum Spanning Tree (MST). Find a MST of the following graph by applying Prim's algorithm.

6. a) Define travelling salesperson problem. Consider the directed graph and the edge cost matrices given below. Solve the given instance of travelling salesperson problem by applying a dynamic programming algorithm. Assume vertex 1 as the source.

(a)

(b)

9M
3M CO3

CO3 L3

9M
CO3 L2
3M

4 M CO4 L2
8 M CO4 L3

4M CO4 L2
CO4
L3
8M

CO5 L2
7M
CO5 L1
5M

CO5 L2
4M
CO5 L2
8M
Hall Ticket Number :

\square
Code: 20A3041T
R-20
|| B.Tech. II Semester Regular \& Supplementary Examinations July 2023
Foundations of Artificial Intelligence and Data Science
(Artificial Intelligence \& Data Science)
Time: 3 Hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO BL
a) Define AI. Specify any one application CO1 L1
b) What is meant by search agents? CO1 L1
c) Define big data and discuss its impact on businesses and decision- making processes. CO3 L2
d) What is the goal of feature selection in machine learning? CO3 L1
e) Name two commonly used data visualization tools. CO5 L1
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=\mathbf{6 0}$ Marks)
Marks CO BL
UNIT-I
2. a) Discuss about various kinds of agents and their propertieswith neat diagram.$6 \mathrm{M} \mathrm{CO1}$ L2b) Discuss the characteristics of AI problem. Can Towers ofHanoi problem be considered as AI problem? Justify youranswer with suitable discussions6M CO1 L3
OR
3. a) What is meant by Search strategy? List and explain variousparameters to evaluate search strategies.6M CO1 L3
b) How to avoid repeated search?a6M CO1 L2
UNIT-II
4. a) Explain the heuristic search techniques.$6 \mathrm{M} \mathrm{CO2}$ L2
b) Explain difference between simple Hill climbing and Steepest Ascent Hill Climbing. 6 M CO L3
OR
5. a) Prove that A^{*} search technique is complete and optimal. $6 \mathrm{M} \mathrm{CO2}$ L3
b) Describe back tracking search for the Constraint satisfaction problem?
UNIT-III
6. a) Explain about the different sampling modeling techniques. 6 M CO3 L4
b) Discuss the importance of fitting a model to data and the roleof maximum likelihood estimation in determining theparameters of probability distributions.6 M CO3 L3
OR
7. a) Define data science and discuss its importance in the era of big data. $6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$
b) Discuss the steps involved in constructing and evaluating statistical models for data analysis. 6 M CO3 L4
UNIT-IV
8. a) Discuss the concept of Exploratory Data Analysis (EDA) and its significance in the data science process. $6 \mathrm{M} \mathrm{CO4} \mathrm{L2}$
b) Explain the concepts of Support Vector Machines (SVM), Naïve Bayes, and Logistic Regression. $6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$
OR
9. Explain about Data K-Means Algorithm with example. 12M CO4 L3
UNIT-V
10. a) Explore the role of interactivity in data visualization. 6 M co5 L3
b) Explain the concepts of visual encoding, perception, and design aesthetics, and provide examples to illustrate their application in data visualization. 6 M CO5 L4
OR
11. Explain the ideas and tools used for data visualization. 12M CO5 L4
*** End ***
