Hair Ticker Number: R-20 R-20 Code: 20.445T II B.Tech. II Semester Regular & Supplementary Examinations July 2023 Microprocessor and Interfacing (Common to CSE, AI&DS and AI&ML) Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, cach question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-B Microprocessor and interfacing (Compulsory question) 1. Answer ALL the following short answer questions (5 X 2 = 10M) CO BL Answer ALL the following Arithmetic instructions of 8086 i) AAA ii) MUL CO1 L2 b) Analyze the different types of command words used in 8259? CO2 L6 OVER the modes of operation supported by 8255? CO3 L6 OVER the different registers in 80286? CO5 L2 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks OVER the different registers in 80286? CO5 L2 DINIT-I<					
Code: 20A445T II B.Tech. II Semester Regular & Supplementary Examinations July 2023 Microprocessor and Interfacing (Common to CSE, AI&DS and AI&ML) Max. Marks: 70 Time: 3 Hours Note: I. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer ALL the following short answer questions of 8086 i) AAA ii) MUL CO1 L2 b) Analyze the different types of command words used in 8259? CO2 CO3 L6 c) What are the modes of operation supported by 8255? CO3 L6 e) What are the different registers in 80286? CO5 L2 Marks CO BL answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks Marks CO BL LUNIT-I 2. a) Explain the functions of different registers in 8086. Also discuss the flag register contents. 6M CO1 L2 b) How procedure CALL and RET take place in 8086. Explain CALL and RET instructions in 8086 instruction set. 6M CO1 L2 b) How procedure CALL and RET take place in 8086. Explain CALL and RET instructions of 8086 with examples.		Hall Ticket Number :	R-20		
Microprocessor and Interfacing [Common to CSE, AI&DS and AI&ML] Max. Marks: 70 Time: 3 Hours In Part-A, each question carries Two marks. 3. Answer ALL the question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) V BL 1. Answer ALL the following short answer questions (5 X 2 = 10M) CO BL a) Illustrate the following short answer questions (5 X 2 = 10M) CO BL a) Illustrate the following short answer questions (5 X 2 = 10M) CO BL a) Illustrate the following short answer questions of 8086 i) AAA ii) MUL CO1 L2 b) Analyze the different types of command words used in 8259? CO2 L6 c) What are the modes of operation supported by 8255? CO3 L6 d) What is USART? CO4 L6 e) What are the different registers in 80286? CO5 L2 b) How procedure CALL and RET take place in 8086. Also discuss the flag register contents. Marks CO1 L2 b) How procedure CALL and RET take place in 8086. Explain CALL and RET instructions of 8086 instruction set. GM CO1 L2 b) How procedure CALL and RET take place in 8086. Explain CALL and RET instructions of 8086 instruction set.	C				
Image: Common to CSE, Al&DS and Al&ML Time: 3 Hours Max. Marks: 70 Time: 3 Hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B EART-A Compulsory question 1. Answer ALL the questions in Part-A and Part-B PART-A Compulsory question 1. Answer ALL the following Arithmetic instructions of 8086 i) AAA ii) MUL CO1 L2 b) Analyze the following Arithmetic instructions of 8086 i) AAA ii) MUL CO1 L2 b) Analyze the different types of command words used in 8259? CO3 L6 OVERTEE Answer five questions supported by 8255? CO3 L6 OVERTEE PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO L2 DEATE-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2 a)			лу 2025		
		(Common to CSE, AI&DS and AI&ML)			
 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) 1. Answer ALL the following short answer questions (5 X 2 = 10M) CO BL a) Illustrate the following Arithmetic instructions of 8086 i) AAA ii) MUL CO1 L2 b) Analyze the different types of command words used in 8259? CO2 L6 c) What are the modes of operation supported by 8255? CO3 L6 d) What is USART? CO4 L6 e) What are the different registers in 80286? CO5 L2 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO BL UNIT-I 2. a) Explain the functions of different registers in 8086. Also discuss the flag register contents. b) How procedure CALL and RET take place in 8086. Explain CALL and RET instructions in 8086 instruction set. 6M C01 L2 OR 3. Explain branch instructions of 8086 with examples. 12M C01 L2 IUNIT-II 4. a) With the help of basic cell explain SRAM and DRAM? M C02 L6 b) With a neat pin diagram explain the minimum mode operation of 8086. 6M C02 L2 	Ν		me: 3 Ho	ours	
3. Answer ALL the questions in Part-A and Part-B PART-A (Compulsory question) $(5 \times 2 = 10M)$ CO BL a) Illustrate the following Arithmetic instructions of 8086 i) AAA ii) MUL CO1 L2 b) Analyze the different types of command words used in 8259? CO2 L6 c) What are the modes of operation supported by 8255? CO3 L6 d) What is USART? CO4 L6 e) What are the different registers in 80286? CO5 L2 PART-B Answer five questions by choosing one question from each unit $(5 \times 12 = 60 \text{ Marks})$ Marks CO BL UNIT-I 2. a) Explain the functions of different registers in 8086. Also discuss the flag register contents. 6M C01 L2 b) How procedure CALL and RET take place in 8086. Explain CALL and RET instructions in 8086 instruction set. 6M C01 L2 b) How procedure CALL and RET take place in 8086. Explain CALL and RET instructions of 8086 with examples. 12M C01 L2 OR 3. Explain branch instructions of 8086 with examples. 12M C01 L2 b) With the help of basic cell explain SRAM and DRAM? 6M C02 L6 b) With a neat pin diagram explain the minimum mode operation of 8086. 6M C02 L2 OR 5. a) What is the purpose of ALE, BHE, DT/R and DEN pins of 8086? Show their timing in the system bus cycle of 8086? 6M C02 L2	Ν	Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
PART-A (Compulsory question) CO BL 1. Answer ALL the following short answer questions (5 X 2 = 10M) CO BL a) Illustrate the following Arithmetic instructions of 8086 i) AAA ii) MUL CO1 L2 b) Analyze the different types of command words used in 8259? CO2 L6 c) What are the modes of operation supported by 8255? CO3 L6 d) What is USART? CO4 L6 e) What are the different registers in 80286? CO5 L2 PART-B Answer five questions by choosing one question from each unit (5 x 12 = 60 Marks) Marks CO5 L2 QUNIT-I 2. a) Explain the functions of different registers in 8086. Also discuss the flag register contents. 6M CO1 L2 D QUNIT-I 2. a) Explain the functions of 8086 instruction set. 6M CO1 L2 D QUNIT-I 2. a) Explain the functions of 8086 instruction set. 6M CO1 L2 D OR 2		•			
(Compulsory question)1. Answer ALL the following short answer questions (5 X 2 = 10M)COBLa) Illustrate the following Arithmetic instructions of 8086 i) AAA ii) MULCO1L2b) Analyze the different types of command words used in 8259?CO2L6c) What are the modes of operation supported by 8255?CO3L6d) What is USART?CO4L6e) What are the different registers in 80286?CO5L2PART-BAnswer five questions by choosing one question from each unit (5 x 12 = 60 Marks)MarksCOBART-BAnswer five questions by choosing one question from each unit (5 x 12 = 60 Marks)MarksCO2L6CO3L2PART-BAnswer five questions by choosing one question from each unit (5 x 12 = 60 Marks)MarksCOBLUNIT-I2aExplain the functions of different registers in 8086. Also discuss the flag register contents.6MCO1L2OR3.Explain branch instructions of 8086 with examples.12MCO1L2OR3.Explain branch instructions of 8086 with examples.12MCO1L2OR3.Explain branch instructions of 8086 with examples.12MCO1L2					

UNIT-III 6. a) Draw and explain the interfacing of cascaded 8259s with 8086. 6M CO3 L6 b) Write an ALP in 8086 to generate a symmetrical square wave form with 1KHz frequency? Give the necessary circuit setup with a DAC? 6M CO3 L6 OR 4M co3 7. a) Describe the interrupt structure in 8086. L6 b) Which interrupt type is associated with TF flag? What is its vector address? 4M CO3 L6 c) What is meant by vector address? How the vector address is used to service the interrupts? 4M CO3 L6 **UNIT-IV** 8. a) Give the specifications of RS232C? 4M CO4 L6 b) Explain about line driver and line receiver used in serial communication? 4M CO4 L6 c) Give the status register of 8251 and explain each bit. 4M CO4 L6 OR Draw and explain the architecture of 8251. 9. 12M CO4 L6 UNIT-V 10. a) Draw and discuss the register organization of 80286. 6M CO5 L2 b) What are the salient features of protected virtual address mode of 80386? 6M CO5 L2 OR L2 11. a) Draw and discuss the flag register of 80386 in details. 6M CO5 L2 b) Enumerate the salient features of Pentium and Pentium Pro. 6M CO5 L2

*** End ***

		Hall Ticket Number :															
	С	ode: 20A543T	1	1				1	1	J	1	1	J		R-20		
		ll B.Tech. Il Seme	ster	Reg	gula	ır & S	Supp	olen	nent	ary	Exa	mino	ation	s Ju	ly 2023	3	
					-	era	-	-									
		1ax. Marks: 70	(Co	omn	non	to C	SE, A	AI&D	S ar	nd A	I&MI	_)		т:	mo. 21		
	IV	10x. Marks. 70				*	****	****						11	me: 3	10015	
	N	ote: 1. Question Paper				-				nd Pa	art-E	B)					
		2. In Part-A, each	-							п							
		3. Answer ALL th	ne qu	estic	ons 1		rt-A PAR'		Part	-В							
					(C	<u>י</u> ompו			estin	1)							
1	۸n	swer ALL the followir	na sh	ort :		-		-			= 10	M)				CO	BL
		Define the term "Inter pr	•			-			(0	Λ 2	- 101	vi j				CO1	L1
	,	ist out the advantages							amn	ning.					C	02	L1
C) V	Vhat do you mean by D)ema	nd P	agin	ıg?				-					C	03	L1
C	d) E	Explain the importance	of dis	sk sc	hedu	uling.									C	04	L2
e	e) [Discuss the principles o	f prot	tectio	on in	a mo	oderr	on con	npute	er sys	tem				C	05	L2
						-	PAR					•.	· - ·				
		Answer <i>five</i> question	s by	cho	osin	ig on	e qu	estic	on tro	om e	ach	unit	(5 X 1	2 =		-	
							1 16 11	T 1							Marks	CO	BL
2	a)	Explain the Dual-Mod		orati	<u></u>	fanc	UNI		eveto	m					6M	CO1	L2
۷.	a) b)	What are the three ma	-				-	-	•						6M		
	0)		anp	uipo	363	oran	0000	-	, 3y 3						OW	001	LZ
3	a)	Consider Four jobs to	be e	xecu	ited (on a s			cess	or sve	stem	arriv	e at ti	me			
0.	α,	0 in the order A, B, C,					-			-							
		units respectively. A									ing a	algor	ithms	to			
		calculate average wa	•			·									8M	CO1	L3
	b)	Explain the criteria for need it?	eval	uatir	ng th	e CP	U sc	hedu	ling a	algori	thms	s? WI	hy do	we	414	CO1	L2
		needit					UNI	r_11							4171	COI	LZ
4	a)	Write in detail about t	he th	read	libra	L									4M	CO2	2 L2
	b)	Apply semaphores to p					tion f	or Pr	oduc	er Co	onsur	ner p	robler	n.		CO2	
	/						0								•		
5.	a)	Discuss Mutual-exclu	sion	imple	eme	ntatio			st Ar	nd Se	t inst	tructi	on.		6M	CO2	2 L2
	b)	What is a Semaphore		•											6M	CO2	2 L2
							UNIT	-III									
6.	a)	Apply first-fit, best-fit,				•		•		•							
		KB, 500 KB, 358 KB,					•		,		•			•	014	000	
	L)	partitions of 300 KB, 6										•			6IVI	CO3	3 L3
	b)	Apply FIFO and LRL page faults would occ	• •		•			•									
		five page frames: 1, 2		-				-	• •						6M	CO3	3 L3

6M CO3 L2

OR

- 7. a) Explain in detail about deadlock detection Techniques.
 - b) Consider a system with five processes P0 through P4 and three resource types A, B, and C. Resource type A has ten instances, resource type B has five instances, and resource type C has seven instances. Suppose, at time T0, the following snapshot of the system has been taken:

	Allocation				Max	X	Available				
	A	B	C	A	В	C	A	B	C		
P0	0	1	0	7	5	3	3	3	2		
P1	2	0	0	3	2	2					
P2	3	0	2	9	0	2					
P3	2	1	1	2	2	2					
P4	0	0	2	4	3	3					

Apply safety algorithm to find out whether the system is in safe state or not? 6M CO3 L3 UNIT-IV 8. a) Discuss the advantages and disadvantages of disk space allocation methods. 4M CO4 L2 b) Apply FCFS, SSTF and SCAN disk-scheduling algorithms to calculate total

distance (in cylinders) that the disk arm moves to satisfy all the pending requests. The queue of pending requests, in FIFO order is: 2,069, 1,212, 2,296, 2,800, 544, 1,618, 356, 1,523, 4,965, and 368. Let as assume that a disk drive has 5,000 cylinders, numbered 0 to 4,999. The drive is currently serving a request at cylinder 2,150, and the previous request was at cylinder 1,805.

OR

- 9. a) Write short notes on
 - i. File Attributes ii. File System
 - b) Apply LOOK, C-SCAN and C-LOOK disk-scheduling algorithms to calculate total distance (in cylinders) that the disk arm moves to satisfy all the pending requests. The queue of pending requests, in FIFO order, is: 86, 147, 91, 177, 94, 150, 102, 175, and 130. Let as assume that a disk drive has 200 cylinders, numbered 0 to 199. The drive is currently serving a request at cylinder 143, and the previous request was at cylinder 125.
 8M CO4 L3

UNIT-V

10. a) What is access matrix? Explain the different implementations of access matrix 6M CO5 L2
b) Describe in detail how firewalls protect systems & networks. 6M CO5 L2
OR

- 11. a) Explain the following program threats.i) Trojan horse ii) Trap door iii) Stack and Buffer overflow6M CO5 L2b) Explain the computer-security classifications.6M CO5 L2
 - *** End ***

4M CO4 L2

	F	all Ticket Number :									
						R-20)				
	Co		Probability	and Statis	stics	s July 202	23				
	Mc	IX. Marks: 70	on to CE, ME, ****	CSE, AI&DS	ana AI&ML)	Time: 3	Hours				
	 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 										
		Ĩ		RT-A							
			(Compulso	ory question)							
1	. An	swer ALL the following sh	ort answer que	estions (5 X 2 = 10M)	(CO E	BL			
ä	a) V	/rite the formula for Rank co	orrelation coeffic	ient with repe	eated ranks.	C	CO1 L	.1			
I	,	wo cards are drawn from a	•		• •	•					
		re both aces if the first card	., .	<i>,</i>	d		CO2 L				
0		the mean of a Poisson varia		find P(X>1)				.3			
(,	efine Type-I and Type-II Err					CO4 L				
(e) E	xplain briefly the Variance R	•			C	CO5 L	.2			
		name fina maatiana ku a		<u>RT-B</u>		0 CO Ma	-l				
	А	nswer <i>five</i> questions by c	noosing one q	uestion from	n each unit (5 x 1		-				
				T 1		Marks	CO	BL			
2		whate Mean Median and M									
Ζ.		culate Mean, Median and Me ass interval 10-20 20-30	30-40 40-50	50-60 60-7	70 70-80 80-90	_					
	_	Frequency 5 9	13 21	20 15		12M	CO1	L3			
			C	R							
3.		Find Karl Pearson's coeffic	ient of correlation	on from the fo	llowing data						
		Wages 100 1	01 102 102	100 99 9	7 98 96 95						
		Cost of living 98 9	99 99 97	95 92 9	5 94 90 91	12M	CO1	L3			
			UNI	т_Ш							
4.	a)	State Baye's Theorem		1-11		2M	CO2	L-1			
	b)	In a bolt factory machines	A B C manufa	cture 20% 3	0% and 50% of th		002	- ·			
	0)	total of their output and 6%									
		random and found to b									
		manufactured from (i) Mach	nine A (ii) Mach	nine B (iii) Ma	chine C	10M	CO2	L-3			
			-	R							
5.	a)	A random variable X is de					000				
	L)	when two dice are thrown.				3M	CO2	L-3			
	b)	For the continuous probabil (i) k (ii) Mean (iii) Variance		ability $c_2 s_{-x} w$ $c_2 s_{-x} w$ $c_3 s_{-x} w$	hen X U,IINU	OM	CO2	L-2			
			UNI	T III		9101	002	L-Z			
6.	a)	Out of 800 families with 5			uld you expect t	'n					
0.	aj	have (i) 3 boys (ii) either 2		•	•						
		probabilities for boys and g	• • • •		,	6M	CO3	L-3			

			ue. 20A		
	b)	In a Normal distribution 7% of the items are under 35 and 89% are under 63. Determine the mean and variance of the distribution OR	6M	CO3	L-3
7.	a)	Average number of accidents on one day on a national highway is 1.6. Determine the probability that the number of accidents are (i) at least one (ii) Atmost one	6M	CO3	L-3
	b)	In a sample of 1000 cases the mean of a certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal, find (i) how many score between 12 and 15? (ii) how many score above 18? (iii) how many		000	
		score below 18?	6M	CO3	L-3
		UNIT–IV			
8.	a)	The mean life of a sample of 10 electric bulbs was found to be 1456 hours with standard deviation of 423 hours. The second sample of 17 bulbs chosen from a different batch shoed a mean life of 1280 hours with standard deviation of 398 hours. Is there a significant difference between the means of two batches at 5% level of significance?	8M	CO4	L-4
	b)	A random sample of 400 items is found to have mean 82 and Standard deviation of 18. Determine maximum error of estimation at 95% confidence interval. Also construct 95% confidence interval.	4M	CO4	L-4
		OR			
9.	a)	An oceanographer wants to whether the depth of the ocean in a certain region is 57.4 fathoms, as had previously been recorded. What can he conclude at the 0.05 level of significance, if readings taken at 40 random locations in the given region yielded a mean of 59.1 fathoms with standard	414	604	
	b)	deviation of 5.2 fathoms? In a random sample of 1000 persons from town A, 400 are found to be consumers of wheat. In a sample of 800 from town B, 400 are found to be consumers of wheat. Do these data reveal a significant difference between town A and town B, so far as the proportion of wheat consumers is concerned? Consider level of significance as 1%.	4M 8M	CO4 CO4	L-4
40					
10.		To compare two kinds of bumper guards, 6 of each kind were mounted on a car and then the car was run into a concrete wall. The following are the costs of repairs.			

Guard I	107	148	123	165	102	119
Guard II	134	115	112	151	133	129

Use 0.01 level of significance to test whether the difference between two sample means is significant.

OR

11. Mechanical engineers, testing a new welding technique, classified welds both with respect to appearance and an X-ray inspection. Test for performance with respect to appearance and X ray inspection are independent (consider level of significance as 5%) Quality

Quanty								
X-Ray	Bad	Normal	Good					
Bad	20	7	3					
Normal	13	51	16					
Good	7	12	21					

12M CO5 L-4

	Hall Ticket Number :	P 20		
	Code: 20A541T	R-20		
	II B.Tech. II Semester Regular & Supplementary Examinations Jul	y 2023		
	Design and Analysis of Algorithms (Common to CSE, AI&DS and AI&ML)			
		ne: 3 Hou	Urs	

	 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)			
1	Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$	CO	BL	
) Show that $5n+6 = O(n)$.	CO [,]		
) Give a recurrence for running time of merge sort.	CO2		
C C		CO		
ď				
u,	the following graph.		T LZ	
	(b) (f)			
e) State the Cook's theorem.	CO	5 L1	
	PART-B		_	
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 12 = 6$		-	
		Marks	CO	BL
2. a)	UNIT-I Formally define the asymptotic notations big-oh, big-omega and theta. Give an		CO1	12
2. aj	example for each of the notations.	9M	001	LZ
b)	· · · · · · · · · · · · · · · · · · ·	l	CO1	L4
,	algorithm segment. Determine T(n) and represent it using theta notation.			
	for $(i = 1; i n; i = i++)$ do			
	for (j=1; j n; j= j+2) do			
	print" AITS Rajampet ";	ЗM		
	OR			
3. a)		۹M	CO1	L3
F)	structure? Explain with an example.	J	001	10
b)	Explain with pseudo code and a suitable example disjoint set <i>union</i> and <i>find</i> operations. What is weighting rule for union operation?	7 8M	CO1	L2
4. a)		I	CO2	L3
,	quick sort. Give a recurrence for the worst-case running time of quick sort and			
	represent its running time using theta notation.	7M		
b)	Explain binary search algorithm with an example.	5M	CO2	L2
	OR			
5. a)			CO2	L3
	knapsack instance n=7, m=15, (p1, p2,,p7) = $(1, 3, 5, 4, 1, 3, 2)$ and			
	(w1, w2,, w7) = (5,10,15,7,8,9,4) by applying greedy algorithm.	7M		
		P 4		
		Page 1 (DT 2	

Hall Ticket Number :

CO2 L3

CO3 L3

b) Define Minimum Spanning Tree (MST). Find a MST of the following graph by applying Prim's algorithm.

5M

9M

3M

9M

CO3

L1

L2

L1

6. a) Define travelling salesperson problem. Consider the directed graph and the edge cost matrices given below. Solve the given instance of travelling salesperson problem by applying a dynamic programming algorithm. Assume vertex 1 as the source.

0	10	15	20
5	0	9	10
6	13	0	12
8	8	9	0

b) Define matrix chain multiplication problem.

OR

7. a) Give a dynamic programming-based algorithm to solve 0/1 knapsack problem CO3 L3 and analyze its running time. Solve the following instance of 0/1 knapsack problem by applying your algorithm.

Item No	Weight (Kg)	Profit (Rs)
1	2	3
2	3	4
3	4	5
4	5	6

Knapsack capacity (W) = 5 Kg

b) Define binary search tree. Draw all different binary search trees possible with CO3 L2 keys 25, 15 and 35. 3M UNIT-IV CO4 8. a) Explain the general method of backtracking. 4M L2 b) Give a backtracking solution to 8-queens problem. CO4 8M L3

OR

- 9. a) Differentiate between FIFO and LC branch and bound CO4 techniques. 4M L2 b) Explain briefly the main steps in an LC branch-and-bound solution to 0/1 CO4 L3
 - knapsack problem. 8M

UNIT-V

- 10. a) Define complexity classes NP-hard and NP-complete. How to show that a CO5 problem is NP-hard? 7M CO5
 - b) What is halting problem of the Turing machine? Determine the complexity class of halting problem. 5M
- OR 11. a) Define decision problem. Give three examples for decision problems which are in CO5 L2 class NP but not in class P. 4M Define satisfiability problem. Design a nondeterministic algorithm to solve CO5 L2 b) satisfiability problem.

8M

н	all Ticket Number :									
							R	-20		
Co	ode: 20A3041T II B.Tech. II Semeste	r Reaular	& Supple	ementa	rv Fxa	minatio	ons July	2023		
	Foundations o	•			•					
	•	rtificial Inte	elligence	& Data S	Scienc	e)	- '	0.11		
M	ax. Marks: 70		*****	**			lime	e: 3 H	ours	
No	te: 1. Question Paper cor 2. In Part-A, each que 3. Answer ALL the q	estion carrie	s Two ma	arks.		3)				
			PART-							
			mpulsory o	• ·	,					
	wer ALL the followi	•		questic	ons (5 X 2 =	= 10M)		CO	BL
•	fine AI. Specify any c								CO1	L1
,	hat is meant by searc	•							CO1	L1
	fine big data and c	liscuss its	s impact	on bu	siness	ses an	d decisi	ion-	000	
	aking processes.	ura aalaat	ion in ma	ahina k		~)				L2
	hat is the goal of feat					gr				L1
e) na	ime two commonly us		PART-		S.				CO5	L1
	Answer <i>five</i> questions by	y choosing		-	n each	unit (5			-	
			UNIT-	1			N	larks	CO	BL
2. a)	Discuss about vari	ous kinde			t thei	nrone	ortios			
2. uj	with neat diagram.		o ugo			ριορι		6M	CO1	12
b)	Discuss the charac	cteristics	of AI p	roblem.	Can	Towe	rs of			
- /	Hanoi problem be		-							
	answer with suitable	e discuss	ions			-	-	6M	CO1	L3
			OR							
3. a)	What is meant by S	Search st	rategy?	List and	d exp	lain va	rious			
	parameters to evalu	uate sear	ch strate	gies.				6M	CO1	L3
b)	How to avoid repea	ted searc	h?					6M	CO1	L2
			UNIT–							
4. a)	Explain the heuristic	c search	techniqu	es.				6M	CO2	L2
b)	Explain difference b		simple H	ill climb	ing ar	nd Stee	epest			
	Ascent Hill Climbing	g .						6M	CO2	L3
			OR							
5. a)	Prove that A* searc	h techniq	ue is co	mplete	and o	ptimal.		6M	CO2	L3
b)	Describe back track	king sear	ch for th	e Cons	traint	satisfa	ction			
	problem?								CO2	L3
								Page	1 of 2	

Code: 20A3041T

	UNIT–III			
6. a)	Explain about the different sampling modeling techniques.	6M	CO3	L4
b)	Discuss the importance of fitting a model to data and the role of maximum likelihood estimation in determining the parameters of probability distributions.	6M	CO3	L3
	OR			
7. a)	Define data science and discuss its importance in the era of big data.	6M	CO3	L2
b)	statistical models for data analysis.	6M	CO3	L4
8. a)	Discuss the concept of Exploratory Data Analysis (EDA) and its significance in the data science process.	6M	CO4	L2
b)	Explain the concepts of Support Vector Machines (SVM), Naïve Bayes, and Logistic Regression.	6M	CO4	L3
	OR			
9.	Explain about Data K-Means Algorithm with example.	12M	CO4	L3
10. a)	Explore the role of interactivity in data visualization.	6M	CO5	L3
b)	design aesthetics, and provide examples to illustrate their	014		
	application in data visualization.	6IVI	CO5	L4
	OR	4014		
11.	Explain the ideas and tools used for data visualization. *** End ***	'I ZIVI	CO5	L4