Hall Ticket Number : \square
Code: 20A543T

R-20

|| B.Tech. II Semester Regular Examinations August 2022

Operating Systems
 (Common to CSE and AI\&DS)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}$| Blooms |
| :---: |
| Level |

a) What are the various types of system calls?

CO1
b) What is process synchronization? What will be the result when processes are not synchronized?

CO2
c) List out the differences between contiguous memory location and non-contiguous memory location.

CO 3
d) What is a file and what are its properties? $\mathrm{CO4}$
e) What are the various ways for protecting the PC?

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)
2. a) Explain about storage structure of the PC.
b) Write about various modes of operating system. With a neat
diagram explain the transition from user mode to kernel mode
and vice-versa.

OR

3. a) Explain above scheduling algorithms.
b) With a neat diagram explain the life cycle of a process.

UNIT-II

4. a) Assume your OS teacher is sharing a file in common amongst all students. If one student tries editing/writing the file, other students cannot read or write at the same time or the updations will not be visible to others. But then while reading others can read. Write pseudo code using Semaphores which gives priority over the readers; i.e., none of the readers should wait if the section is currently opened for reading.

Blooms Level

b) The Singles-Badminton game is designed only for 2 players. If one player is playing, the other player has to wait for his turn and vice versa. Solve this problem with appropriate algorithm
and justify the same.

OR

5. a) Write a short note on models of multithreading in process management.
b) Discuss the approaches to implement multiple processors scheduling in OS.

UNIT-III

6. a) Explain about resource allocation graph. Give the examples for resource allocation graph with cycle and without cycle.
b) Discuss Banker's algorithm with an example.

OR

7. a) Illustrate the concept which helps to avoid external fragmentation with example.
b) Consider a system with "Six" partitions in the memory in which "three" partitions consumes the processes inside to them and "three" partitions are holes. The memory structure is given below:

450 MB	860 MB	1350 MB	2360 MB	4050 MB	1350 MB

The processes enter the system whose size is as given (in order): $240 \mathrm{MB}, 480 \mathrm{MB}, 1050 \mathrm{MB}$, and 780 MB . Implement "First Fit", "Best Fit" and "Worst Fit" algorithm and determine which algorithm can optimally satisfy this requirement. Justify your answer with a proper explanation.

UNIT-IV

8. a) Discuss file mounting in-detail.
b) Write about various file accessing methods.

OR

9. a) Write short note on disk scheduling algorithms.
b) Explain about various RAID levels
UNIT-V
10. a) Illustrate the steps involved in DMA with a neat diagram.
b) Explain the life cycle of an I/O request.

OR

11. a) Write about computer security classifications.
b) Describe in-detail how firewalls protect systems and networks.
\square
Code: 20AC41T
I| B.Tech. II Semester Regular Examinations August 2022
Probability and Statistics
(Common to CE, ME, CSE and AI\&DS)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
12. In Part-A, each question carries Two mark.
13. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$)
a) The aerokopter AK 1-3 is an ultra-lightweight manned kit helicopter with a high rotor

CO	Blooms Level
1	L1

b) State the addition theorem of probability. Explain it if the events are (i) mutually 2 L1 exclusive and (ii) Independent.
c) Write the conditions for which binomial distribution can be approximated by Poisson 3 L1 distribution.
d) Discuss about the errors that occur in sampling.

4 L1
e) Write the test statistic for the difference between two variances.

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Calculate the mean, median and mode for the frequency distribution given below:

Height (nm)	$205-245$	$245-285$	$285-325$	$325-365$	$365-405$	Total
Frequency	3	11	23	9	4	50

OR
12M 1 L2
3. a) Find Karl Pearson's coefficient of correlation between sales and expenses of the following 10 firms:

Firm	1	2	3	4	5	6	7	8	9	10
Sales	50	50	55	60	65	65	65	60	60	50
Expenses	11	13	14	16	16	15	15	14	13	13

6M 1 L3
b) Calculate Spearman's rank correlation coefficient between advertisement cost and sales from the following data:

Advertisement cost ('000 Rs)	39	65	62	90	82	75	25	98	36	78
Sales (Lakhs)	47	53	58	86	62	68	60	91	51	84

6M 1 L3

UNIT-II

4. a) Two cards are drawn at random from an ordinary deck of 52 cards. What is the probability of getting two aces if
(i) the first card is replaced before the second card is drawn;
(ii) the first card is not replaced before the second card is drawn? $6 \mathrm{M} \quad 2 \quad \mathrm{~L} 3$
b) State and prove Baye's theorem.
6M 2 L2

OR

5. A random variables X has the following probability function:

x	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	K	2 K	2 K	3 K	$\mathrm{~K}^{2}$	$2 \mathrm{~K}^{2}$	$7 \mathrm{~K}^{2}+\mathrm{K}$

Determine: (i) K (ii) Evaluate $\mathrm{P}(\mathrm{X}<6)$ (iii) Evaluate $\mathrm{P}(0<\mathrm{X}<5)$ (iv) mean and variance

UNIT-III

6. a) Fit a binomial distribution to the following data:

$\mathrm{x}:$	0	1	2	3	4	5
$\mathrm{f}:$	10	10	30	25	15	10

b) Given a random variable having the normal distribution with mean 16.2 and variance 1.5625 , find the probabilities that it will take on a value (i) greater than 16.8, (ii) between 13.6 and 18.8.

OR

7. a) If a random variable X follows Poisson distribution such that $P(X=1)=P(X=2)$, find (i) the mean and variance of the distribution (ii) $P(X=0)$.
b) An automatic machine fills distilled water in 500 ml bottles. Actual volumes are normally distributed about a mean of 500 ml , and standard deviation 20 ml .
(i) What proportion of the bottles are filled with water outside the tolerance limit of 475 ml to 525 ml ?
(ii) To what value does the standard deviation need to be adjusted if 99% of the bottles must be within tolerance limits?

UNIT-IV

8. a) A random sample of size 100 is taken from a population with standard deviation 5.1. Given that the sample mean is 21.3 , construct a (i) 95% (ii) 98% confidence interval for the population mean.
b) Write the procedure in testing the hypothesis.

OR

9. a) Suppose that we want to estimate the true proportion of defectives in a very large shipment of adobe bricks, and that we want to be at least 95% confidence that the error is at most 0.04 . How large a sample will we need if (i) we have no idea what the true proportion might be;
(ii) we know that the true proportion doesn't exceed 0.12 ?
b) To test the claim that the resistance of electric wire can be reduced by more than 0.050 ohm by alloying, 32 values obtained for standard wire yielded mean of 0.136 ohm and standard deviation 0.004 ohm, and another 32 values obtained for alloyed wire yielded mean 0.083 ohm and standard deviation 0.005 ohm. At 0.05 level of significance, does this support the claim?

UNIT-V

10. Two horses A and B were tested according to the time (in seconds) to run a particular track with the following results. Test whether the two horses have the same running capacity?

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	--
OR							

11. From the following data find whether there is any significant liking in the habit of taking soft drinks among the categories of the employees.

Soft drinks	Clerks	Teachers	Officers
Pepsi	10	25	65
Thumsup	15	30	65
Fanta	50	60	30

12M 5 L3

4 M	4	L 1

II B.Tech. II Semester Regular Examinations August 2022

Design and Analysis of Algorithms

(Common to CSE and AI\&DS)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}$| Blooms |
| :---: |
| Level |

a) Define time complexity and space complexity. CO1
b) What is meant by Divide - and - Conquer approach?

CO 2
c) Define the Dynamic 0/1 Knapsack Problem

CO 3
d) Write the Control Abstraction of iterative Backtracking method. CO 4
e) State Cook's theorem. CO5

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

2. a) Using step count find the time complexity of sum of ' n ' natural numbers
b) Describe find and union operation on sets

$$
6 \mathrm{M} \mathrm{CO1} \quad \mathrm{~L} 3
$$

OR

3. a) What is pseudo-code? Explain with an example.
b) Describe best case, average case and worst case efficiency of an algorithm?

$$
9 \mathrm{M} \text { CO1 } \mathrm{L} 1,2
$$

UNIT-II

4. a) Show the result of running Quick sorting technique on the sequence $38,27,43,3,9,82,10$

$$
6 \mathrm{M} \text { CO2 }
$$

b) Derive the Average case time complexity of Quick sorting technique.

6 M CO 2
L3
5. a) State the Job - Sequencing with deadlines problem. Find an optimal sequence to the $\mathrm{n}=5$ Jobs where profits (P1,P2,P3,P4,P5) $=(20,15,10,5,1)$ and deadlines (d1,d2,d3,d4,d5) =(2,2,1,3,3).
b) Write the Binary search algorithm and analyze for its best, worst and average case time complexity.

UNIT-III

6. Draw an Optimal Binary Search Tree for $\mathrm{n}=4$ identifiers (a1, a2, a3, a4) $=$ (do, if, read, while) $P(1: 4)=(3,3,1,1)$ and $Q(0: 4)=(2,3,1,1,1)$.

OR

7. a) Explain how Matrix - chain Multiplication problem can be solved using dynamic programming with suitable example.
b) Explain Reliability Design Problem with suitable example.

UNIT-IV

8. a) What is a Hamiltonian Cycle? Explain how to find Hamiltonian path and cycle using backtracking algorithm.
b) Give the statement of sum -of subsets problem. Find all sum of subsets for $n=4,(w 1, w 2, w 3, w 4)=(11,13,24$, 7) and $M=31$.Draw the portion of the state space tree using fixed - tuple sized approach.

OR

9. a) Discuss the 4 - queen's problem. Draw the portion of the state space tree for $n=4$ queens using backtracking algorithm.
b) Write Control Abstraction of Least $-\operatorname{Cost}(\mathrm{LC})$ Search.

6M CO4 L3
$6 \mathrm{M} \mathrm{CO4}$

UNIT-V

10. a) Define P, NP, NP-Complete and NP-Hard
b) Write nondeterministic algorithm for sorting of an array.

6M CO5

OR

11. a) Explain the satisfiability problem.
b) Distinguish between deterministic and non deterministic algorithm.
$6 \mathrm{M} \mathrm{CO5}$
$6 \mathrm{M} \mathrm{Co5}$
6M co5 L2
Hall Ticket Number :
R-20
Code: 20A3041T
II B.Tech. II Semester Regular Examinations August 2022
Foundations of Artificial Intelligence and Data Science

Time: 3 Hours
(Artificial Intelligence and Data Science)
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M})$ Blooms Level
a) Define Al CO1 L1
b) A* algorithm is based on which search method? CO2 L1
c) What is Data Science process? CO 3 L3
d) How is data exploration done? CO4L1
e) Write any two advantages of Data PresentationCO5L1
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. a) Explain about the foundations of AI.
b) Explain the structure of agents.
6M CO1 L2

OR

3. a) Discuss the heuristic function. Explain how the heuristic $\quad 6 \mathrm{M} \quad \mathrm{CO} 1 \quad \mathrm{~L} 2$ function helps during search procedure. Explain with a suitable example.
b) Explain about the Uninformed Search Algorithm. $\quad 6 \mathrm{M} \quad$ CO1 \quad L3

UNIT-II

4. a) Explain about A^{*} algorithm in detail
b) Explain about Local search Algorithm.
6 M CO2 L3

OR

5. a) Explain how a constraint satisfaction problem (CSP) 6M CO2 L4 may be solved.
b) Discuss the importance of CSP backtracking.
6 M CO2 L3

UNIT-III

6. a) Explain about roles and stages in data science project.
$6 \mathrm{M} \mathrm{CO3}$
b) Describe Statistical modeling in Data Science
$6 \mathrm{M} \mathrm{CO3}$

OR

7. Write about Discrete and Continuous Distributions
 12M CO3

UNIT-IV

8. a) Explain the k-Means Algorithm with an example. $6 \mathrm{M} \mathrm{CO4} \quad \mathrm{~L} 4$
b) Give the outline of Naïve Bayesian classification.

6M CO4 L2

OR

9. a) Why SVM is an example of a large margin classifier? $\quad 6 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 2$
b) Write in detail about Logistic regression.

6 M CO4 L2

UNIT-V

10. a) Explain the ideas and tools used for data visualization. $\quad 6 \mathrm{M} \quad \operatorname{CO5} \quad \mathrm{L} 4$
b) Give examples of inspiring (industry) projects. $\quad 6 \mathrm{M} \quad \mathrm{CO} 5 \quad \mathrm{~L} 2$ OR
11. Write the applications of data science in Geospatial 12M CO5 L4 analytics and modeling

II B.Tech. || Semester Regular Examinations August 2022

Microprocessor and Interfacing

(Common to CSE and AI\&DS)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)
$\left.\begin{array}{llc}\text { 1. Answer ALL the following short answer questions } & (5 \times 2=10 \mathrm{M}) & \mathrm{CO}\end{array} \begin{array}{c}\text { Blooms } \\ \text { Level }\end{array}\right] \begin{array}{lll}\text { a) List the control flags in } 8086 \text { microprocessor } & & \mathrm{CO} \\ \text { b) Discuss the significance of ALE pin in } 8086 & \mathrm{~L} 2 \\ \text { c) Describe CWR format of BSR mode of } 8255 \text { ? } & \mathrm{CO} 3 & \mathrm{~L} 2 \\ \text { d) List different modes of } 8253 \text { ? } & \mathrm{CO} 4 & \mathrm{~L} 1 \\ \text { e) Name any two features of } 80286 \text { ? } & \mathrm{CO} 5 & \mathrm{~L} 1\end{array}$
PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

UNIT-I

2. Draw the internal block diagram of 8086 microprocessor and explain.

12M co1
L2

OR

3. a) Develop an alp to sort the N byte numbers in ascending order.

6M co1
L6
b) Develop an alp to reverse the string of 10 Words using string instructions.

6M co1
L6

UNIT-II

4. Analyze the minimum mode memory read operation with relevant time cycle diagram

12M co2
L4

OR

5. Justify is the significance of DMA and explain interfacing diagram with 8086 processor to transfer the data.

12M
CO2
L5

UNIT-III

6. a) Explain the function of ports in 8255 PPI

6M co3 L2
b) Develop interfacing circuit to rotate stepper motor in clock wise direction continuously
$6 \mathrm{M} \mathrm{co3}$
7. With neat sketch explain the architecture of 8259 PIC 12M соз L2
UNIT-IV
8. Explain the architecture of 8253 with neat diagram. 12M co4 L2
OR
9. a) Show the format of data transfer in asynchronous data 4M co4 L3
b) Justify the necessity of TTL to RS232 conversion discuss how it is converted. 8M co4 L5
UNIT-V
10. a) Differentiate real and protection mode in 80386 4M cos L2
b) Describe the features of 80386 8 M cosL1
OR
11. Summarize the architectural features of Pentium andPentium pro processors12M cosL5

