Code: 1GC41

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: RAJAMPET (AUTONOMOUS)

II B. Tech. II Semester Supplementary Examinations, Jan/Feb 2014 Mathematics—III (Common to EEE & ECE)

Time: 3 hours

Max Marks: 70

Answer any FIVE of the following All questions carry equal marks (14 Marks each)

1.	· a)	Show that $\beta(m,n) = \int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$	7 M
	b)	Show that $\int_{0}^{\infty} x^{n} e^{-a^{2}x^{2}} dx = \frac{1}{2a^{n+1}} \Gamma(\frac{n+1}{2}), (n > -1) \text{ and hence find the value of } \int_{-\infty}^{\infty} e^{-a^{2}x^{2}} dx$	7 M
2.	a)	If f(z) is a regular function of z, prove that $(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}) f(z) ^2 = 4 f'(z) ^2$	7 M
-	b)	If $f(z) = u + iv$ is an analytic function of z and if $u - v = e^{x}(\cos y - \sin y)$, find $f(z)$ in terms of z.	, 1,1
2	۵)		7 M
э.	a)	If $sin(A+iB) = x+iy$ then show that $x^2 cos ec^2 A - y^2 sec^2 A = 1$	7 M
	b)	Find all the roots of the equation Tanh $z + 2 = 0$	7 M
4.	a)	Integrate $f(z) = x^2 + ixy$ from A (1,1) to B (2,8) along the curve 'c' given by	
		$x=t, y=t^3$	7 M
	b)	Evaluate $\int_{C} \frac{z^3 - \sin 3z}{(z - \frac{\pi}{2})^3} dz$ with C: $ z = 2$ using Cauchy's integral formula.	7 M
5	a)	Obtain Taylor series to represent the function $\frac{z^2-1}{(z+2)(z+3)}$, in the region $ z <2$	7 M
	b)	Find the Laurent series of $\frac{7z-2}{(z+1)z(z-2)}$ in the annulus $1 < z+1 < 3$	7 M
6.	a)	Evaluate $\int_C \frac{e^z}{(z^2 + \pi^2)^2} dz$ where C is $ z = 4$ using Residue theorem.	7 M
	b)	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{(5-3\sin\theta)^2}$ using the method of contour integration.	7 M
7.	a)	Use Rouche's theorem to show that the equation $z^5 + 15z + 1 = 0$ has one root in the	
		disc $ z < \frac{3}{2}$ and four roots in the annulus $\frac{3}{2} < z < 2$.	
	b)	State and prove Fundamental theorem of Algebra.	7 M
			7 M
8.	a)	Under the transformation $w = \frac{1}{z}$ find the image of the circle $ z - 2i = 2$	7 1 1
	b)	Find a bilinear transformation which maps the points $(-1, 0, 1)$ into the points $(0, i, 3i)$.	7 M
			7 M

R-11

Code:1G343

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: RAJAMPET (AUTONOMOUS)

II B.Tech. II Semester Supplementary Examinations Jan/Feb 2014

Pulse and Digital Circuits (EEE)

Max. Marks: 70

Time: 03 Hours

Answer *any five* questions All Questions carry equal marks (14 Marks each)

- a. Draw the response of high pass circuit for square wave and derive the expression for 8M percentage tilt.
 - b. The periodic ramp voltage shown (Figure 1a) is applied to a low pass RC circuit. Find 6M the equations from which to determine the steady state output waveform.

Figure 1a

- 2. a. Draw the circuit diagram of slicer circuit using Zener diodes and explain its operation 7M with the help of its transfer characteristic.
 - b. Draw the diode comparator circuit and explain the operation of it when ramp input signal is applied.
- 3. a. Explain the behavior of a BJT as a switch. Give Applications.
 - b. A germanium transistor is operated at room temperature in the CE configuration. The 7M supply voltage is 6V, the collector-circuit resistance is 200Ω and the base current is 20% higher than the minimum value required to drive the transistor into saturation. Assume the following transistor parameters:

Ico= -5 μ A, I_{EO}=-2 μ A, h_{FE}=100, and r_{bb}=250 Ω . Find V_{BE}(Sat) and V_{CE}(Sat).

- 4. a. Explain how a Schmitt trigger can be used as a comparator and as a squaring circuit.
 - b. A collector coupled mono stable multi vibrator using n-p-n silicon transistor has the following parameters $V_{cc} = 12v$, $V_{BB} = 3v$, $R_C = 2k\Omega$, $R_1 = R_2 = R = 20k\Omega$, $h_{FE} = 30$, $r_{bb} = 200~\Omega$ and C = 1000 pF. Calculate and plot to scale the wave slopes at each base and collector. Also find width of the o/p pulse.
- 5. a. With the help of a neat circuit diagram and waveforms explain the working of a 8M transistor Miller time base generator.
 - b. In the UJT sweep circuit, V_{BB} = 20V, V_{yy} = 50V, R=5k Ω , C=0.01 μ F. 6M UJT has η = 0.5. Calculate
 - i. amplitude of sweep signal
 - ii. Slope and displacement errors and
 - iii. estimated recovery time.

7M

6.	a.	What is pedestal? How it effects the output of a sampling gates? How to avoid it?	7M
	b.	For the four diode sampling gate R_L = R_C = $100k\Omega$ and that R_2 = $2k\Omega$, R_f = 50Ω for V_s = $25V$, compute gain A , V_{min} and $V_{c(min)}$,compute $V_{n(min)}$ for V = V_{min} .	7M
7.	a.	Explain about synchronization of a sweep circuits with symmetrical signals.	8M
	b.	A UJT sweep operates with $V\nu$ =3V,Vp =16V and η = 0.5. A sinusoidal synchronizing voltage of 2V peak is applied between bases and natural frequency of the sweep is 1 KHz, over what range of sync signal frequency will sweep remain in 1:1 synchronism with the sync signal?	6M
8.	a.	Explain the effect of diode capacitance on the out put of pulse of a diode AND gate.	6M
	b.	Draw the circuit diagram of NAND gate using TTL logic and explain.	8M

%%%%%

Code: 1G242

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: RAJAMPET (AUTONOMOUS)

II B.Tech. II Semester Supplementary Examinations Jan/Feb 2014

Electrical Circuits-II (EEE)

Max. Marks: 70

Time: 03 Hours

Answer *any five* full questions All Questions carry equal marks (14 Marks each)

1. a. Obtain the expression of ABCD parameters in terms of Z parameters

7

b. Find the Y- parameters for the bridged T network as shown in fig below.

7

2. a. Write the properties of tree with example

7

b. Determine power supplied by source using nodal analysis for the circuit shown.

7

3. a. Derive the Fourier series of a square wave drawing a neat wave form.

7

- b. A series RLC circuit with $R=25\Omega$, L=1H and $C=10\mu F$ is energized with a source $V(t)=15\sin 100t + 20\sin 200t + 5\sin 300t$. Determine the effective value of current and the average power consumed by the circuit.
- 7 .

4. a. Explain Step Response of R-L-C Series Network

7

b. A Function in S-domains is given by $G(s) = \frac{S+1}{S(S+2)}$. Find the initial value of g(t).

7

5. a. Derive the expression for i(t) of R-L series circuit when DC voltage in applied to it at t=0 by closing the switch. Define time constant of R-L circuit.

7

7

b. A dc voltage of 200V is suddenly applied to a series L-R circuit having $R=20\Omega$ and inductance 0.2H. Determine the voltage drop across the inductor at the instant of switching on and at 0.02 sec later.

- 6. a. Derive an expression for the current response in RL series circuit with a sinusoidal 7 source
 - b. A 50Hz, 400V (peak value) sinusoidal voltage is applied at A=0 to a series R-L circuit having resistance 5 ohms and inductance 0.2H. Obtain an expression of current at any instant 't', calculate the value of the transient current 0.01sec after
- 7. a. Explain concept of poles and zero's in a Network Function

7

7

- b. Obtain the Driving Point admittance of a combination of a capacitor which is parallel to the R-L Series circuit.
- 8. a. write the passive real functions

switching on.

7

7

b. Realize the network whose impedance is given as $Z1(s) = \frac{s^4 + 10s^2 + 7}{s^3 + 2s}$.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES :: RAJAMPET (AUTONOMOUS)

II B.Tech. II Semester Supplementary Examinations Jan/Feb 2014

Linear Control Systems (Common to EEE & ECE)

Max. Marks: 70

Time: 03 Hours

6M

Answer *any five* questions All Questions carry equal marks (14 Marks each)

- 1. a. List the characteristics of closed loop control system and explain the closed loop 8M control system with an example.
 - b. Explain the effect of feedback on transient response of a system.
- 2. a. Explain the working principle of an AC servomotor with necessary diagrams. 7M
 - b. Simplify the block diagram shown in figure below. 7M

- 3. Derive the time response of a second order system when subjected to a unit step 14M input signal for all possible values of damping ratio.
- 4. The characteristic equation of a feedback control system is given by $s^4+3s^3+12s^2+$ (k-14M 16) s+k=0. Sketch the root locus plot for $0 \le k < \infty$ and show that the system is conditionally stable. Determine the range of gain for which the system is stable
- 5. Plot the Bode plot for $G(s) = \frac{k}{s(s+2)(s+20)}$. Determine
 - (i) Limiting value of k for system to be stable.
 - (ii) Value of k for gain margin to be 10 db.
 - (iii) Value of k for phase margin to be 50°.
- 6. a. Explain the concept of Nyquist stability criterion.
 - b. The open loop transfer function of a unity feedback system is given by $G(s) = \frac{1}{s(1+s)(1+2s)}$ Sketch the polar plot.
- 7. a. Explain the steps involved in the design of Lead compensator in frequency domain. 7M
 - b. Design a Lead compensator for a unity feedback system with an open loop transfer function $G(s) = \frac{k}{s(s+1)}$ for the specifications of $K_v = 10 \text{ s}^{-1}$ and $\phi_m = 35^\circ$.
- 8. a. Obtain the state space representation of a field controlled DC servomotor.

 7M

 b. Obtain the state model of the system whose transfer function is given by
 - b. Obtain the state model of the system whose transfer function is given by

 7M