Hall Ticket Number :												
----------------------	--	--	--	--	--	--	--	--	--	--	--	--

Code : 1GC42

Max. Marks: 70

R-11/R-13

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018

Probability and Statistics

(Common to CE, ME & IT)

Time: 03 Hours

Answer any five questions All Questions carry equal marks (14 Marks each)

1. a) Find the mean, median and mode for the following distribution.

х	1	2	3	4	5	6	7	8	
у	4	9	6	25	22	18	7	3	

b) Find the rank correlation for the following indices of supply and price of an article.

Supplyindex	124	100	105	112	102	93	99	115	123	104	99	113	121	103	101
Priceindex	80	100	102	91	100	111	109	100	89	104	111	102	98	111	123

- 2. a) State and Prove Baye's theorem.
 - b) If the probability that a communication system will have high fidelity is 0.81 and the probability that it will have high fidelity and high selectivity is 0.18, what is probability that a system with high fidelity will also have high selectivity?
- 3. a) Check whether the following can serve as probability distributions:

(i)
$$f(x) = \frac{x-2}{2}$$
 for $x = 1, 2, 3, 4$
(ii) $h(x) = \frac{x^2}{25}$ for $x = 0, 1, 2, 3, 4$

b) Find the value of k and the distribution function F(x) given the probability density function of a random variable X as:

$$f(x) = \frac{k}{x^2 + 1}, \quad -\infty < x < \infty.$$

- 4. a) Prove that the mean and the variance of the Poisson distribution are equal.
 - b) Find the probabilities that a random variable having the standard normal distribution will take on a value
 - (i) between 0.87 and 1.28;
 - (ii) between -0.34 and 0.62;
 - (iii) greater than 0.85;
 - (iv) greater than -0.65.
- 5 A population consists of six numbers 4,8,12,16,20,24. Consider all samples of size two which can be drawn without replacement from this population. Find
 - (a) Population mean
 - (b) Population S.D
 - (c) Mean of the sampling distribution of means
 - (d) S.D of the sampling distribution of means.

- 6. a) Explain briefly the following
 - (i) Point Estimation
 - (ii) Interval Estimation
 - b) The average zinc concentration recovered from a sample of zinc measurements in 36 different locations is found to be 2.6 grams per millilitre.
 Find a 95% confidence intervals for the mean zinc concentration in the river.
 Assume that the population standard deviation is 0.3.
- 7. a) Explain the test procedure for Z test concerning one mean when \dagger is known.
 - b) A storekeeper wanted to buy a large quantity of bulbs from two brands A and B respectively. He bought 100 bulbs from each brand A and B and found by testing brand A had mean life time of 1120 hrs and the S.D of 75 hrs and brand B had mean life time 1062 hrs and S.D of 82 hrs. Examine whether the difference of means is significant. Use a 0.01 level of significance.
- 8. Four methods are under development for making discs of a super conducting material. Fifty discs are made by each method and they are checked for super conductivity when cooled with liquid.

	1 st Method	2 nd Method	3 rd Method	4 th Method
Super Conductors	31	42	22	25
Failures	19	8	28	25

Test the significant difference between the proportions of conductors at 0.05 level.

]			
	cket Number :									Γ	R-11 / R-	13
Code: 1G641 II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018 Strength of Materials-II (Civil Engineering)												
Max. N	Aarks: 70		((gine	enng	3)				Time: 3 H	lours
	All	Questior				•			s ea	ch)		
1.	1. Derive an expression for change in dimensions of a thin cylindrical shell due to internal pressure.										14M	
2.	2. A steel plug 120mm in diameter is forced into a steel ring of 180mm external diameter and 75mm wide. The strain in the circumferential direction was measured as 0.700×10^{-4} . If μ between the contact surfaces is 0.3 and E= 200 GN/m ² , calculate the axial force required to push the plug out of the ring.								14M			
3. a) b)	What are the assumptions made in the theory of pure torsion? Derive the basic torsion equation $T/J = fs/R = c^{\theta}/I$.								7M 7M			
4.	A weight of 200N is dropped on to a helical spring made of 15 mm wire, closely coiled to a mean diameter of 150mm with 22 coils. Determine the height of drop if the instantaneous compression is 68mm. C= 84 GN/m ² .								14M			
5.	Compare the crippling loads given by Rankine's and Euler's formulae for a tabular strut 3m long with outer and inner diameters of 40mm & 35mm loaded through pin joints at both ends. Take yield stress as 350 MN/m^2 , = $1/7500 \text{ & E} = 200 \text{ GN/m}^2$.							14M				
6.	A hollow circu thickness carri 8cm. Determi material.	ies a loa	d of 1	00 KN	in the	e ver	tical	plane	e at	an eo	ccentricity of	14M
7. a) b)	Explain the ter A beam of rect maximum BM maximum ben	tangular s of 16KN	section m. Loc	100mr ate the	n wide nutra	l axi	s of		•			5M 9M
8.	A ring beam of spaced suppor weight. Detern their variation.	rts. The b	beam c	arries a	a udl (of 3.6	5 KN	/m in	clusi	ve of	its own self	14M