Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 1G241

R-11 / R-13

Time: 3 Hours

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018

Electrical Machines-II

(Electrical and Electronics Engineering)

Max. Marks: 70

Answer any **five** questions

All Questions carry equal marks (14 Marks each)

- 1. Explain the principal of operation of transformer. Derive its e. m. f. equation.
- 2. a) In a transformer, derive the condition for maximum efficiency and thus find the load current at which the efficiency is maximum.
 - b) A200kVA 1-phasetransformer is in operation continuously. For 8 hours in a day, the load is 160kW at 0.8 pf. For 6 hours, the load is 80kW at unity pf and for the remaining period of 24 hours it runs on no-load. Full-load copper losses are 3.02 kW and the iron losses are 1.6 kW. Find all-day efficiency.
- 3. a) Discuss how you will perform O.C and S.C tests on a single phase transformer in the Laboratory.
 - b) A 6 kVA, 250/500 V, transformer gave the following test results: Short-circuit test: 20 V ; 12 A, 100 W
 Open circuit test: 250 V; 1 A, 80 W
 Determine the transformer equivalent circuit.
- 4. Draw the Connection diagram of Y- Y and connected three-phase transformer.
- 5. a) How does the rotor speed differ from synchronous speed explain in detail with neat diagram? Also what is meant by the term slip and explain its significance.
 - b) The star connected rotor of an induction motor has a standstill impedance of (0.4+j4) ohm per phase and the rheostat impedance per phase is (6+j2) ohm. The motor has an induced emf of80V between slip-rings at stand-still when connected to its normal supply voltage. Find (i) rotor current at standstill with the rheostat is in the circuit and (ii) When the slip-rings are short-circuited and motor is running with a slip of 3%.
- 6. Derive the following (i) Torque equation of an induction motor (ii) Condition for Maximum Torque? (iii) Relation between starting torque and full load torque in terms of maximum torque.
- 7. a) Explain no load tests and blocked rotor tests for an 3-phase induction motor.
 - b) In a no load test, an induction motor took 10 A and 450 W with a line voltage of 110 V. If stator resistance per phase is 0.05 and friction and windage losses amount to 135 W. calculate the exciting conductance and susceptance/ph.
- 8. Explain the principle of operation of Induction generator with the help of torque -speed characteristics.

	<u> </u>						R-11	/ R-13	;
Hall Ticket Number :						r			

Code: 1G244

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018 Linear Control Systems

(Common to EEE & ECE)

Max. Marks: 70

Answer any **five** questions

All Questions carry equal marks (14 Marks each)

- 1. a) Define open loop and closed loop control system.
 - b) Explain open loop and closed loop Temperature control system with neat sketches.
- 2. a) Explain Block diagram algebra with clear figures
 - b) Use the Block diagram reduction technique to find the transfer function Y(S)/R(S)

- 3. Define Delay time, Rise time, Peak time, Maximum overshoot, Settling time with a neat sketch. And derive expression for any two of the above.
- 4. Determine the stability using Routh Criterion of the closed loop transfer function

 $G(s) = \frac{10}{S^5 + 2S^4 + 3S^3 + 6s^2 + 5S + 3}.$

- 5. Explain the procedure for magnitude and phase plot of Bode plot
- 6. a) Define Polar plot.
 - b) Explain the procedure to determine the Gain margin and Phase margin from Polar plot.
- 7. Explain the procedure for the design of lead compensator in Frequency Domain.
- 8. Estimate the complete state controllability and observability of the system using

Jordan Canonical form
$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -4 & 2 \\ 0 & 0 & -10 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}.$$

Time: 3 Hours

Hall Ticket Number :
Code: 1GC41 R-11 / R-13
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018 Mathematics-III
(Common to EEE & ECE) Max. Marks: 70 Time: 3 Hours
Answer any five questions All Questions carry equal marks (14 Marks each) ********
1. a) Define Beta function. Prove that $s(m,n) = s(n,m)$
b) Find the value of $\int_{0}^{1} x^{3} \sqrt{1-x} dx$ using s and Γ functions
2. State and Prove Cauchys-Reimann equations in Cartesian form.
3. Find the general and principal values of
a. i^i b. $\log(1+i\sqrt{3})$
4. a) Evaluate $\int_{c} (x+y) dx + x^2 y dy$ from (0,0) to (3,9) along the straight line $x^2 = y$.
b) Find $\int_{c} \frac{1}{(z-1)(z-3)} dz$ with C: $ z = 2$ using Cauchy's integral formula.
5. Expand $f(z) = \frac{z-1}{z+1}$, in Taylor series about the point (i): z = 0 $(ii): z = 1$
$(l) \cdot z = 0$ $(ll) \cdot z = 1$
6. Using Residue Theorem, Evaluate $\int_{0}^{2f} \frac{1}{5 + 4\cos \pi} d\pi$
7. State and prove Argument principle.
8. Find the fixed points of the transformation
(a) $w = \frac{6z - 9}{z}$ (b) $w = \frac{z - 1}{z + 1}$
z z+1 ***

Hall T	icke	et Number :													Г		
Code : 1G343										R-13							
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018																	
Pulse and Digital Circuits																	
(Electrical & Electronics Engineering) Max. Marks: 70 Time: 03 Hours											S						
Answer any five questions All Questions carry equal marks (14 Marks each)																	
All Questions carry equal marks (14 Marks each)																	
1.	a)	Define % til	t of I	RC c	ircuit	. Ob	tain	the r	espo	onse	of R	C hię	gh I	bass	cir	cuit for a	a 7M
	b)	ramp input.	"		~ * ~ ~	ما ما الم		:				ر م	:4 ~		-1		4M
	c)	What is a Di Compare lo								Ũ	am o	raD	me	rentia	ator	ſ .	3M
		-	-														
2.	a)										e 6M						
	b)										4M						
	c)											4M					
3.	a)	Explain in detail the junction diode switching times.										7M					
	b)	Discuss the		-					•								7M
4.	a)	M/bat are th	o offe	oto	of oo	~~~	totin	a	ita	oro in	o hi	nond		ivo r		000	7M
	b)	What are the Discuss self					lain	y cap	acii	51511	aDI	nary	' G	ivere	eas	0115	7M
-														_			
5.	a)	Explain the and explain		•	•				•		•				w tl	he circui	t 7M
	b)	List out the						•				•					7M
6	a)	Discuss the	annli	iootic		faa	omol	ina a	oto								7M
01	b)	Diocuso and applications of a sampling gate.									7M						
7									•								
1.	 7. a) Explain use of a mono stable relaxation device as a divider b) Explain the synchronization of a sweep circuit with symmetrical signals 									7M 7M							
	b)	Explain the	synci	nron	zatio	n ot	a sw	eep (CIFCU	it with	n syn	nmet	rica	ai sigi	nal	5	
8.										7M							
	b)	Illustrate the	TTL	tote	m po	le op	perat	ion o	faN	AND	gate	€.					7M