						Hall Ticket Number :

Code: 1G342

R-11 / R-13

Time: 3 Hours

7M

7M

II B.Tech. II Semester Supplementary Examinations May 2017

Electromagnetic Waves and Transmission Lines

(Electronics and Communication Engineering)

Max. Marks: 70

Answer any **Five** questions All Questions carry equal marks (**14 Marks** each)

- 1. a) State Coulomb's law. Develop the vector expression for Force due to N number of Charges. 7M
 - b) In a cylindrical conductor of radius 2mm, the current density varies with distance from the axis according to J = 103e-400rA/m2. Find the total current I.
 7M
- 2. a) Establish Poisson's and Laplace's equations from Gauss's law.
 - b) A parallel plate capacitance has 500mm side plates of square shape separated by 10mm distance. A sulphur slab of 6mm thickness with r=4 is kept on the lower plate. Find the capacitance of the setup, if a voltage of 100 volts is applied across the capacitor. Calculate the voltage at both the regions of the capacitor between the plates.
- a) Formulate expressions for force (i) due to a moving charged particle in a B field (ii) on a current element in an external B field and (iii) between two current elements.
 7M
 - b) Estimate the magnetic interaction between two given circuits

			Also suggest a procedure to find the self-inductance of a given inductor.	7M
	4.	a)	Outline the Final statements of Maxwell's Equations for Time Varying Fields. Represent the Final forms of Maxwell's Equations in Point and Integral forms.	7M
		b)	Find the total current in a circular conductor of radius 4mm, if the current density varies according to $J=104/r$ A/m2.	7M
;	5.	a)	Suggest a method to categorize good conductors and good dielectrics.	7M
		b)	A uniform plane wave propagating in a medium has E = 2e- z sin (108t - z) ay V/m. If the medium is characterized by r=1, μ r=20, and =3mhos/m, find , , and H.	7M
	6.	a)	State and Prove Poynting Theorem. Justify the Poynting theorem and differentiate time average and instantaneous poynting vectors.	7M
		b)	Define and formulate the expressions for the following (i) Total Internal Reflection (ii) Surface Impedance	7M
	7.	a)	A lossless transmission line of length 100m has an inductance of 28 μ H and capacitance of 20 nF. Find out	
			i. Propagation velocity	
			ii. Phase constant at an operating frequency of 100 KHz	
			iii. Characteristic impedance of the line.	6M
		b)	List and explain the various types of distortions that occur in a transmission line.	8M
	8.	a)	Explain the principle of stub matching. List the types of stub matching used in practice.	7M
		b)	A 75 is terminated by a load of 120+80 . Find the maximum and minimum impedances	

 b) A 75 is terminated by a load of 120+80. Find the maximum and minimum impedances on the line.
 7M

Hall	Tick	et Number :]
Code	e: 10	R-11 / R-	13
	L	B.Tech. II Semester Supplementary Examinations May 2017	
		Electrical Technology (Electronics and Communication Engineering)	
Мс	ax. N	Time: 3 Ho	ours
		Answer any Five questions All Questions carry equal marks (14 Marks each) ********	
1.	a)	Derive an expression for transient current response in RLC series circuit.	7M
	b)	A series RL circuit with R=30 and L=15H has a constant voltage V=60V	
		applied at t=0. Determine the current I, the voltage across resistor and the voltage across the inductor.	7M
2.	a)	Explain briefly about Lattice Attenuator for symmetrical resistance.	7M
۷.	b)	Design a symmetrical lattice attenuator to have characteristic impedance of	7 101
	ω)	800 and attenuation of 20dB.	7M
3.	a)	To find Short circuit Admittance parameters for the circuit shown below.	
		2 Ω	
		$\leq_{4\Omega} \leq_{8\Omega}$	
		\$*** \$°**	4014
	b)	Write symmetry and reciprocity condition for open circuit, short circuit, hybrid	10M
	0)	and ABCD parameters.	4M
4.	a)	Design a constant K-high pass filter	10M
	b)	Design a high pass filter having cut-off frequency of 1KHz with a load resistance of 600.	4M
5.	a)	Explain about the voltage build up for self-excited generators.	7M
0.	ري b)	Explain in briefly about the load characteristics of compound generator.	7M
6.	a)	Explain in briefly about the speed control methods for dc shunt motor.	10M
0.	b)	A 4-pole d.c motor takes a 50A armature current, the armature has lap	
	/	connected 480 conductors. The flux per pole is 20mwb.Calculate the gross	
		torque developed by the armature of motor.	4M
7.	a)	Explain briefly about the OC and SC test on single phase transformer.	10M
	b)	A 100 KVA transformer has iron losses of 1.2kW and full load copper losses	
		of 1.5kW. Find i) KVA for maximum efficiency ii) Maximum efficiency at unity p.f	4M
8.	a)	Explain briefly about the shaded pole induction motor with neat sketch.	10M
0.	a) b)	Explain about the AC Tachometer.	4M
	~,		

Hall Tick	et Number :	1
Code : 1	G244 R-11/	R-13
	II B.Tech. II Semester Supplementary Examinations May 2017	
	(Common to EEE & ECE)	
Max.	Marks: 70 Time: 03 Hour	rs
	Answer any five questions All Questions carry equal marks (14 Marks each) ********	
1. a)	Explain about classification of open loop and closed loop control systems with different types of examples.	8M
b)	Write the characteristics of feed-back.	6M
2. a)	Derive the transfer function of armature control DC motor.	8M
b)	Write the properties of signal flow graph.	6M
3. a)	Sketch the step response of a second order system and indicate the time- domain specifications	8M
b)	Describe the three types of error constants.	6M
4. a)	A characteristics equation of a feed back control system is $S^{5}_{+}S^{4}+4S^{3}+4S^{2}+2S+1$	
	check the stability of the system by using R-H Criterion	6M
b)	Sketch the root locus for the open loop transfer function of unity feed back control system is given by $G(S)H(S)=K/S(S+2)(S+4)$	8M
5.	Sketch the Bode plot for the open loop transfer function $G(S)=5/S(S+0.2S)(S+0.02S).$	
	Determine gain cross over frequency and phase cross over frequency assume $H(S)=1$	14M
6.	Sketch the polar plot of an open loop transfer function of unity feed back control system is given by $G(S)H(S)=1/S(1+S)(1+4S)$ and sketch the stability of the system	14M
7.	Briefly explain about different types of compensation networks	14M
8.a)	Write state transition matrix and its properties.	6M
b)	State and explain controllability and observability with necessary examples.	8M

	Ha	all Ticket Number :	-
	Cor	de: 1GC41 R-11 / R-13	
		II B.Tech. II Semester Supplementary Examinations May 2017	
		Mathematics – III	
	Μ	(Common to EEE & ECE) Nax. Marks: 70 Time: 3 Hours	
		Answer any Five questions	
		All Questions carry equal marks (14 Marks each)	
1	a)	Evolution $\int_{0}^{\infty} x^{c} dx$	
	u)	Evaluate $\int_{0}^{\infty} \frac{x^{c}}{c^{x}} dx$.	7M
	b)	Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{f}$.	
	,	Show that $\binom{1}{2} = \sqrt{2}$	7M
2.	a)	Show that the polar form of Cauchy's Riemann equations are $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial_{u}}$, $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial_{u}}$.	
		Deduce that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial r^2} = 0$.	
			7M
	b)	Determine the analytic function, whose real part is $x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$.	7M
3.	a)	Separate the real and imaginary parts of i) sec $z = ii$) tanh z .	7M
	b)	Find the all roots of the equation sinhz=i.	7M
4.	a)	Evaluate $\int_{c} \frac{z^2 - z + 1}{z - 1} dz$, where c is the circle (i) $ z =2$ (ii) $ z =1/2$.	7M
	b)	State and prove Cauchy's theorem.	7M
5.	a)	Find Taylor's expansion of $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about the point z=i.	
	,	$z^2 + z$	7M
	b)	Expand $\frac{7z-2}{(z+1)z(z-2)}$ about the point z=-1 in the region $1 < z+1 < 3$.	7M
6	a)	Using Residue theorem evolute $\int \sin f z^2 + \cos f z^2 dz$, where σ is the single $ z = 2$	
0.	a)	Using Residue theorem, evaluate $\int_{c} \frac{\sin f z^2 + \cos f z^2}{(z-1)^2(z-2)} dz$ where c is the circle $ z = 3$.	7M
	۲	Lloing Residue theorem evolute $\int_{0}^{\infty} x^{2} dx$	
	b)	Using Residue theorem, evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}.$	7M
7.	a)	State and prove Fundamental theorem of Algebra.	7M
	b)	Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles $ z = 1$ and $ z = 2$.	7M
8.	a)	Find the image of the circle $ z-2i =2$ under the transformation $w=1/z$.	7M
	b)	Find the Bilinear transformation that maps the points (1,i,-1) into the points (2,i,-2).	7M

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code : 1G341

R-11/R-13

II B.Tech. II Semester Supplementary Examinations May 2017 Signals and Systems

(Electronics & Communication Engineering)

Time: 03 Hours

Max. Marks: 70

Answer any **five** questions All Questions carry equal marks (**14 Marks** each)

- 1. If x(t) and y(t) are orthogonal, then show that the energy of the signal x(t) + y(t) is identical to the energy of the signal x(t) y(t) and is given by $E_x + E_y$. Explain this result using vector concepts. In general, show that for the orthogonal signals x(t) and y(t) and for any pair of arbitrary constants C₁ and C₂, the energies of C₁x(t) +C₂y(t) and C₁x(t) C₂y(t) are identical, given by C₁²Ex + C₂²Ey.
- 2. a) Sketch the signal f (t) = t^2 for all t and find the trigonometric Fourier series (t) to represent f(t) over the interval (-1, 1). Sketch (t) for all values of t.
 - b) Show that, in general, time inversion of a periodic signal does not affect the amplitude spectrum and the phase spectrum is also unchanged except for the change of sign.
- 3 Prove the frequency, differentiation property

-jtf(t)
$$\iff \frac{d}{dw} \frac{F(w)}{dw}$$

Using the time shifting property, show that if $f(t) \iff F(w)$ $f(t+T) + f(t-T) \iff 2 F(w) \cos Tw$

4. Show that a filter with transfer function

$$H(w) = \frac{(10)^5}{w^2 + 10^{10}}$$

show that this filter is physically un realizable by using the time domain criterion and the frequency domain criterion.

- 5. a) What is Impulse Response? Show that the Response of an LTI system is convolution Integral of its impulse Response with input signal?
 - b) Find the convolution of two signals $x(n) = \{1, 1, 0, 1, 1\}$ and $h(n) = \{1, -2, -3, 4\}$ and represent them graphically.
- 6. State and prove sampling theorem for low pass band limited signal and explain the process of reconstruction of the signal from its samples.
- 7. a) Discuss any four properties of Laplace Transform.
 - b) L^{j} etermine the improper ies of I pulse response $d_{dt}^{2} \frac{y(t)}{dt_{2}} + 3 \frac{d_{dt}^{y(t)}}{dt} + 2_{y(t)} = x(t)$ with all initial conditions to be zero.
- 8. a) Find the inverse z-transform of thall in z^{z^2+z} , ROC: z > 3 using Partial fraction method. Compute the response of the system.

y(n) = 0.7y[n - 1] - 0.12y[n - 2] + x[n - 1] + x[n - 2] to input x(n) = nu[n]. Is the system is stable?

Hall Tic	ket Number :	
Code :	R-11/R	-13
couc .	Il B.Tech. II Semester Supplementary Examinations May 2017 Switching Theory and Logic Design (Electronics and Communication Engineering)	
Max	Time: 03 Hours Answer any five questions All Questions carry equal marks (14 Marks each)	S
1. a	ii. Perform the following subtraction	2M
	10011.11 – 101.11 using 2's complement. iii. Given that $(292)_{10} = (1204)_b$. Determine the value of b.	3M 2M
t	ii. The Hamming code 101101101 is received. Correct it if any error. Here	ЗM
2. a	four parity bits and odd parity is used.) Simplify the following functions using Boolean algebra (i) X = M (3,5,7)	4M
	(ii) $(x + y) (x + \overline{y})$	7M
t	Implement the following function using NAND gates. F = wx + x y (z + w)	7M
3.	Determine the prime implicants of the following function and verify using k-map. Y = (P,Q,R,S) + (3,4,5,7,9, 13, 14, 15)	14M
4. a		6M
t	$F(A, B, C, D) = \overline{A} B \overline{D} + A C D + \overline{B} C D + \overline{A} \overline{C} D$	8M
5. a) Implement the following Boolean functions using PAL w(A,B,C,D) = m (0,2,6,7,8,9,12,13) $x (A,B,C,D) = m (0,2,6,7,8,9,12,13,14)$ $y (A,B,C,D) = m (2,3,8,9,10,12,13)$ $z (A,B,C,D) = m (1,3,4,6,9,12,14)$	10M
t		4M
6. a) What is race around problem? With neat diagrams explain how it will be overcome in JK master slave flip flop.	7M
b) What is excitation table? Write the excitation tables for the following flip-flops. (i) S R flip-flop (ii) JK flip-flop	7M
7. a) What is Mealy machine? Give an example.	7M
b) Explain the concept of minimal cover table.	7M
8. a		7M 7M

Γ