Hall Tic	ket Number :]			
	Code: 1G342							13						
Code: 1	ll B.Tech. Il Se Electro	magr	netic	: Wo	ave	s ar	nd Ti	rans	smis	sior	n Lin		018	
Max. N	larks: 70	ctroni	LS UI	iu c	2011	mon	icun		ngii		ng)	Tir	ne: 3 H	lours
	All Q	uestior	Ansv 1s cc		,					(s ec	ach)			
1. a)	State and expla	ain Cou	lomb	's lav	<i>w</i> an	d fiel	d inte	ensity	/.					7M
b)	0								•		,	• •		
	respectively. C and the electric							10	nc c	narge	e Ioca	ate at	(0, 3, 1) 7M
2. a)	Distinguish be	tween o	condu	uctior	n and	d con	vecti	on c	urrer	nts.				6M
b)	Derive Poissor applications co		•		•			om f	unda	amen	tals.	List fe	ew of its	s 8M
3. a)	A circular loop a . Determine							ies a	ı dire	ct cu	rrent	of 10 .	A along	7M
b)	Explain the cor	cept of	mag	netic	: sca	lar aı	nd ve	ector	pote	ntial	conc	epts.		7M
4. a) b)	State Ampere's Derive the bou			-		-					-			7M 7M
5. a)	Explain the wa					-				d de	rive 1	the ne	ecessary	/ 7M
b)	A uniform plane		2 e ^{- 2}	0	•				S					
	If the medium i								d =	= 3 S	/m, fi	ind ,	and H	. 7M
6. a)	What is poyntir	ig theoi	rem?	Deri	ve th	ne ex	press	sion	for p	oyntir	ng ve	ector.		7M
b)	Write short not	es on n	orma	l inci	deno	ce of	a pla	ine w	ave	on a	perfe	ect die	lectric.	7M
7. a)	List out differer	it types	of tra	ansm	nissio	on lin	es ar	nd wi	rite it	s app	olicat	ions.		7M
b)	A distortion les	s line l	nas Z	$Z_0 = 6$	50,	=	20 m	ו/Np	m, u	= 0.0	6 c, v	where	c is the	;
	speed of light in	n a vac	uum.	Find	IR, L	_, G,	C an	d a	at 100) MH	z.			7M
8. a)	Write short not (i) Reflectio (ii) VSWR		ficien	t										7M
b)	Explain double	stub m	atchi	ng w	ith s	uitab	le dia	agrar	n.					7M
					*	**								

<u> </u>	all Ticket Number :]
CC	ode : 1G246]
	II B.Tech. II Semester Supplementary Examinations May 2018	
	Electrical Technology	
	(Electronics and Communication Engineering)	
	Max. Marks: 70 Time: 03 Hours	
	Answer any five questions All Questions carry equal marks (14 Marks each)	
a)	Derive an expression for transient response in RC series circuit with DC excitation.	-
b)	Derive the transient response of series R-L-C circuit, with DC input, using Laplace transform.	
	i. Derive the necessary differential equation and solve.	
	ii. Discuss the cases of over-damping, critical –damping and underdamping.	-
a)	For the symmetrical 2-port network shown in Fig bellow find ABCD-parameters.	
	$ \begin{array}{c} $	
		-
b)	Explain inter connection of two port networks in series and cascaded configurations.	7
a)	Explain briefly constant-k Low pass filter and high pass filter.	-
b)	Determine the cut-off frequency and the nominal impedance of the low-pass filter sections shown	

o100 mH	100 mH
=	0.2 µF
0	o

4. a) Define attenuator and explain -type attenuator with necessary equations. 7M b) Design a T-type attenuator to give an attenuation of 60dB and to work in line of 500 impedance. 7M 5. a) Draw Constructional features of DC Generator and explain each component in Generator. 7M Derive EMF equation of DC Generator and explain methods of excitation of DC Generators 7M b) 6. a) Draw and explain different speed-torque characteristics of shunt, series and compound Motors. 7M b) Explain speed control methods of DC Shunt motor. 7M 7. a) Explain constructional features of single phase transformer and draw its phasor diagram on No load. 7M 7M b) Explain OC and SC test on single phase transformer.

- 8. a) Briefly explain principle of operation of shaded pole motor.
 - b) Explain principle of operation of stepper motor with its characteristics.

7M

7M 7M

Hall Tic	Ket Number : R-11/R-13 GC41 R-11/R-13	3
	B.Tech. II Semester Supplementary Examinations May 2018	
	Mathematics – III	
	(Common to EEE & ECE)	
Max. Ma	arks: 70 Time: 3 Hou Answer any five questions	Urs
	All Questions carry equal Marks (14 Marks each)	
1. a)	Evaluate $\int_{0}^{f/2} \sqrt{\tan u} d_u$.	
,		7N
b)	Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{f}$.	
		7N
2. a)	Prove that the function f(z) defined by $f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}$ ($z \neq 0$), $f(0) = 0$)
	$\frac{is}{\epsilon}$ continous and the Cauchy's Riemann equations are satisfied at the origin, ye	t
	f'(0) does not exist.	7N
b)	Determine the analytic function, whose real part is $x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$.	7N
3 a)	Find all roots of the equation $tanhz + 3 = 0$	7N
b)	Separate the real and imaginary parts of i) sec $z = ii$) tanh z .	7N
4. a)	State and prove Cauchy's integral formula.	7N
b)	Evaluate $\int_{c} \frac{z^2 - z + 1}{z - 1} dz$, where c is the circle (i) $ z =2$ (ii) $ z =1/2$.	7N
5. a)	Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point z=-i.	
		7N
b)	State and prove Laurent's theorem.	7N
6. a)	Using Residue theorem, evaluate $\int \tan z dz$ where c is the circle $ z = 2$.	
	c 2 ·	7N
b)	Using Residue theorem, evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$.	
7. a)	State and prove Rouche's theorem.	7№ 7№
b)	Prove that the polynomial z^5+z^3+2z+3 has just one zero in the first quadrant of	of
	the complex plane.	7N
8. a)	Find the image of the infinite strip $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$.	7N
b)	Find the Bilinear transformation that maps the points $(1,i,-1)$ into the points $(2,i,-2)$.	7N

Hall Ticket Number: R-11/R-13 R-11/R-13 Code : 1G341 II B.Tech. II Semester Supplementary Examinations May 2018 Signals and Systems (Electronics & Communication Engineering) Max. Marks: 70 Answer any five questions All Questions carry equal marks (14 Marks each) ********* 1. a) Discuss the concept of signal space and hence approximation of a function using complete set of orthogonal functions. 9 biscuss the concept of generalized Fourier series representation of signal f (t). 6 0 atxin the concept of generalized Fourier series representation of signal f (t). b) Describe Impulse function and Signum function AM 3 a) Explain how Fourier Transform is developed from Fourier series. 8M 3 a) Explain how Fourier Transform of a periodic pulse train with period T=T/2 with amplitude 'A'. 6M 4 b) Find the Fourier Transform of a periodic pulse train			
III B.Tech. II Semester Supplementary Examinations May 2018 Signals and Systems (Electronics & Communication Engineering) Max. Marks: 70 Time: 03 Hours Answer any five questions All Questions carry equal marks (14 Marks each) ********* 1. a) Discuss the concept of signal space and hence approximation of a function using complete set of orthogonal functions. b) Describe Impulse function and Signum function c) a) Explain the concept of generalized Fourier series representation of signal f (t). 6M b) Explain Drichlet's conditions and properties of Fourier series. 8M 3. a) Explain how Fourier Transform is developed from Fourier series. 8M b) Find the Fourier Transform of a periodic pulse train with period T=T/2 with amplitude 'A'. 6M 4. a) Differentiate between LTI and LTV systems with examples b) Find whether the following systems are causal or non-causal i) y(t)=x(-t) ii) y(t) = x(t+10)+x(t) ii) y(t)=x(t) iii) y(t) = x(t+10)+x(t) iii) y(t)=x(t)sin(t+1) 9M 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample	Hall lick		12
Signals and Systems (Electronics & Communication Engineering) Max. Marks: 70 Time: 03 Hours Answer any five questions All Questions carry equal marks (14 Marks each)	Code : 1	G341	-13
(Electronics & Communication Engineering.) Max. Marks: 70 Time: 03 Hours Answer any five questions All Questions carry equal marks [14 Marks each] ************************************			
Max. Marks: 70Time: 03 HoursAnswer any five questions All Questions carry equal marks (14 Marks each) ************************************			
All Questions carry equal marks (14 Marks each) ************************************	Max.		5
 using complete set of orthogonal functions. b) Describe Impulse function and Signum function 6M 2. a) Explain the concept of generalized Fourier series representation of signal f (t). b) Explain Drichlet's conditions and properties of Fourier series. 3. a) Explain how Fourier Transform is developed from Fourier series. b) Find the Fourier Transform of a periodic pulse train with period T=T/2 with amplitude 'A'. 6M 4. a) Differentiate between LTI and LTV systems with examples b) Find whether the following systems are causal or non-causal i) y(t)=x(-t) ii) y(t) = x(t+10)+x(t) iii) y(t)=x(t)sin(t+1) 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 6M 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function b) Find the Inverse Laplace transform of the functions i)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 6M 8. a) Find the Z-transform of the following x[n]=aⁿu[n] 		All Questions carry equal marks (14 Marks each)	
 b) Describe Impulse function and Signum function 6M 2. a) Explain the concept of generalized Fourier series representation of signal f (t). 6M Explain Drichlet's conditions and properties of Fourier series. 8M 3. a) Explain how Fourier Transform is developed from Fourier series. 8M b) Find the Fourier Transform of a periodic pulse train with period T=T/2 with amplitude 'A'. 6M 4. a) Differentiate between LTI and LTV systems with examples b) Find whether the following systems are causal or non-causal i) y(t)=x(-t) ii) y(t)=x(t+10)+x(t) iii) y(t)=x(t)sin(t+1) 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 6M 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function b) Find the Inverse Laplace transform of the functions 1) Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 6M 8. a) Find the Z-transform of the following x[n]=cosnw.u[n] ii) x[n]=aⁿu[n] 	1. a)		
 2. a) Explain the concept of generalized Fourier series representation of signal f (t). b) Explain Drichlet's conditions and properties of Fourier series. 3. a) Explain how Fourier Transform is developed from Fourier series b) Find the Fourier Transform of a periodic pulse train with period T=T/2 with amplitude 'A'. c) Differentiate between LTI and LTV systems with examples b) Find whether the following systems are causal or non-causal i) y(t)=x(-t) ii) y(t)=x(t+10)+x(t) iii) y(t)=x(t)sin(t+1) 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. b) Explain Natural and Flat top sampling & effects of under sampling. c) With the help of neat sketches explain sampling theorem for Band limited signals b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample c) A) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function b) Find the Inverse Laplace transform of the functions 1) Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) c) M 			
 b) Explain Drichlet's conditions and properties of Fourier series. 8M 3. a) Explain how Fourier Transform is developed from Fourier series 8M b) Find the Fourier Transform of a periodic pulse train with period T=T/2 with amplitude 'A'. 6M 4. a) Differentiate between LTI and LTV systems with examples b) Find whether the following systems are causal or non-causal i) y(t)=x(-t) ii) y(t) = x(t+10)+x(t) iii) y(t)=x(t)sin(t+1) 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. 7M 6. a) With the help of neat sketches explain sampling theorem for Band limited signals & M b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 6M 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 6M 8. a) Find the Z-transform of the following x[n]=a ⁿ u[n] 8M	D)	Describe Impulse function and Signum function	6M
 3. a) Explain how Fourier Transform is developed from Fourier series b) Find the Fourier Transform of a periodic pulse train with period T=T/2 with amplitude 'A'. 4. a) Differentiate between LTI and LTV systems with examples b) Find whether the following systems are causal or non-causal i) y(t)=x(-t) ii) y(t) = x(t+10)+x(t) iii) y(t)=x(t)sin(t+1) 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. b) Explain Natural and Flat top sampling & effects of under sampling. c) a) With the help of neat sketches explain sampling theorem for Band limited signals. b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 6M 8. a) Find the Z-transform of the following x[n]=cosnw.u[n] ii) x[n]=aⁿu[n] 	2. a)	Explain the concept of generalized Fourier series representation of signal f (t).	6M
 b) Find the Fourier Transform of a periodic pulse train with period T=T/2 with amplitude 'A'. a) Differentiate between LTI and LTV systems with examples b) Find whether the following systems are causal or non-causal i) y(t)=x(-t) ii) y(t) = x(t+10)+x(t) iii) y(t)=x(t)sin(t+1) 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. b) Explain Natural and Flat top sampling & effects of under sampling. 6. a) With the help of neat sketches explain sampling theorem for Band limited signals b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)^3(s+8) 2)Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 8. a) Find the Z-transform of the following x[n]=aⁿu[n] 8M 	b)	Explain Drichlet's conditions and properties of Fourier series.	8M
amplitude 'A'.6M4. a) Differentiate between LTI and LTV systems with examples5Mb) Find whether the following systems are causal or non-causal5Mi) y(t)=x(-t) ii) y(t) = x(t+10)+x(t) iii) y(t)=x(t)sin(t+1)9M5. a) With the help of neat sketches explain sampling theorem for Band limited signals.7Mb) Explain Natural and Flat top sampling & effects of under sampling.7M6. a) With the help of neat sketches explain sampling theorem for Band limited signals.8Mb) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample6M7. a) Find the Laplace transforms of the following functions8Mb) Find the Inverse Laplace transform of the functions8Mb) Find the Inverse Laplace transform of the functions8Mc) 1)Y(s) = 10s/(s+2) ³ (s+8) 2) Y(s) = 2s ² +6s+6/(s+2)(s ² +2s+2)6M8. a) Find the Z-transform of the following x[n]=a ⁿ u[n]8M	3. a)	Explain how Fourier Transform is developed from Fourier series	8M
 b) Find whether the following systems are causal or non-causal y(t)=x(-t) y(t) = x(t+10)+x(t) y(t)=x(t)sin(t+1) 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. b) Explain Natural and Flat top sampling & effects of under sampling. 6. a) With the help of neat sketches explain sampling theorem for Band limited signals 8M b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 6M 7. a) Find the Laplace transforms of the following functions Exponential Function ii) Unit step Function iii) Damped sign function BM b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 8. a) Find the Z-transform of the following x[n]=aⁿu[n] 	b)		6M
 i) y(t)=x(-t) ii) y(t) = x(t+10)+x(t) iii) y(t)=x(t)sin(t+1) 9M 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. 7M b) Explain Natural and Flat top sampling & effects of under sampling. 7M 6. a) With the help of neat sketches explain sampling theorem for Band limited signals 8M b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 6M 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function 8M b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 6M 8. a) Find the Z-transform of the following x[n]=aⁿu[n] 8M 	4. a)	Differentiate between LTI and LTV systems with examples	5M
 5. a) With the help of neat sketches explain sampling theorem for Band limited signals. b) Explain Natural and Flat top sampling & effects of under sampling. 6. a) With the help of neat sketches explain sampling theorem for Band limited signals b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 8. a) Find the Z-transform of the following x[n]=aⁿu[n] 8M 	b)	Find whether the following systems are causal or non-causal	
 signals. 7M b) Explain Natural and Flat top sampling & effects of under sampling. 7M 6. a) With the help of neat sketches explain sampling theorem for Band limited signals 8M b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 6M 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function 8M b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 8. a) Find the Z-transform of the following x[n]=cosnw.u[n] ii) x[n]=aⁿu[n] 		i) $y(t)=x(-t)$ ii) $y(t) = x(t+10)+x(t)$ iii) $y(t)=x(t)\sin(t+1)$	9M
 6. a) With the help of neat sketches explain sampling theorem for Band limited signals 8M b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 6M 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function 8M b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 6M 8. a) Find the Z-transform of the following x[n]=cosnw.u[n] ii) x[n]=aⁿu[n] 8M 	5. a)		7M
 b) The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine the maximum interval of the sample 6M 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function 8M b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 6M 8. a) Find the Z-transform of the following x[n]=cosnw.u[n] ii) x[n]=aⁿu[n] 8M 	b)	Explain Natural and Flat top sampling & effects of under sampling.	7M
the maximum interval of the sample6M7. a)Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function8Mb)Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)^3(s+8) 2) Y(s) = 2s^2+6s+6/(s+2)(s^2+2s+2)6M8. a)Find the Z-transform of the following x[n]=cosnw.u[n] ii) x[n]=a^nu[n]8M	6. a)	With the help of neat sketches explain sampling theorem for Band limited signals	8M
 7. a) Find the Laplace transforms of the following functions i) Exponential Function ii) Unit step Function iii) Damped sign function 8M b) Find the Inverse Laplace transform of the functions 1)Y(s) = 10s/(s+2)³(s+8) 2) Y(s) = 2s²+6s+6/(s+2)(s²+2s+2) 8. a) Find the Z-transform of the following x[n]=cosnw.u[n] ii) x[n]=aⁿu[n] 	b)	The signal x(t)= cos5 t+0.3cos10 t is instantaneously sampled. Determine	
i) Exponential Function ii) Unit step Function iii) Damped sign function 8M b) Find the Inverse Laplace transform of the functions $1)Y(s) = 10s/(s+2)^3(s+8)$ 2) $Y(s) = 2s^2+6s+6/(s+2)(s^2+2s+2)$ 6M 8. a) Find the Z-transform of the following $x[n]=cosnw.u[n]$ ii) $x[n]=a^nu[n]$ 8M		the maximum interval of the sample	6M
b) Find the Inverse Laplace transform of the functions $1)Y(s) = 10s/(s+2)^{3}(s+8) 2) Y(s) = 2s^{2}+6s+6/(s+2)(s^{2}+2s+2) \qquad 6M$ 8. a) Find the Z-transform of the following $x[n]=cosnw.u[n] \qquad ii) x[n]=a^{n}u[n] \qquad 8M$	7. a)	Find the Laplace transforms of the following functions	
1)Y(s) = $10s/(s+2)^3(s+8)$ 2) Y(s) = $2s^2+6s+6/(s+2)(s^2+2s+2)$ 6M8. a) Find the Z-transform of the following $x[n]=cosnw.u[n]$ ii) $x[n]=a^nu[n]$ 8M		i) Exponential Function ii) Unit step Function iii) Damped sign function	8M
8. a) Find the Z-transform of the following x[n]=cosnw.u[n] ii) x[n]=a ⁿ u[n] 8M	b)	•	
$x[n]=cosnw.u[n]$ ii) $x[n]=a^nu[n]$ 8M		$1)Y(s) = 10s/(s+2)^{3}(s+8) \qquad 2) Y(s) = 2s^{2}+6s+6/(s+2)(s^{2}+2s+2)$	6M
	8. a)	Find the Z-transform of the following	
b) Derive relationship between z and Laplace Transform. 6M		$x[n]=cosnw.u[n]$ ii) $x[n]=a^nu[n]$	8M
,	b)		6M

	На	II Ticket Number :			I
ļ	Co	de: 1G245		R-11 / R-13	
	CO	II B.Tech. II Semester Su	innlementary Exar	ningtions May 2018	
			Theory and Logic	,	
		•	nd Communication E	•	
	Mo	ax. Marks: 70		Time: 3 Hours	
			wer any five question		
		All Questions co	arry equal marks (14 M	Aarks each)	
1.		(a) Convert 2598.675 ₂ to Hexadeo			
1.		(b) Given that $16_{10} = 100_{b}$, Find the			
		(c) Convert 10101111001.0111 ₂ to			
		(d) Express -45 in 8 bit 2's comple	ement form.		
		(e) Convert 4BAC ₁₆ to binary.			
		(f) Convert the binary 1001 to the (g) Encode data bits 1101 into 7 b	•	odo	14M
r	a)	Simplify the following Boolean exp			14111
۷.	a)	i) $x'y' + xy + x'y$ ii) $x'z' + y$		TIDE OF ITTERAIS	7M
	b)	i. What are Universal gates? Re	, , ,	R gates using universal gates	7 1 1 1
	0)	ii. Reduce the expression $f = (B)$		on gates using universal gates.	7M
3.				7, 8, 9, 12, 13, 15) using Tabular	
0.		Method.	11 = 11(1, 2, 3, 3, 5, 0, 0)	7, 0, 0, 12, 10, 10) Using Tabular	14M
4.	a)	i) Draw the 4-bit look ahead carry	adder with necessarv exi	pressions?	
	,	ii) Design a 1 bit Magnitude compa			7M
	b)	i) Design a 4 bit Binary to Gray co	•••		
	,	ii) Implement the following function		(z, z) = m(0, 2, 3, 5)	7M
5.	a)	Implement the following Boolean	functions using PAL wit	h four inputs and 3-wide AND-OR	
		structure. i) $F1(A, B, C, D) =$	m(2, 12, 13)		
			m(7, 8, 9, 10, 11, 12, 13	-	
		iii) F3(A, B, C, D) =	m(0, 2, 3, 4, 5, 6, 7, 8, 1	0, 11, 15)	8M
	b)	Draw the threshold gate. Explain t	he universality of Thresh	old gate.	6M
6.	a)	Convert J-K Flip-Flop to T Flip-Flo	р		6M
	b)	÷		ing D- Flip-flops and explain the	
		difference between them state dia	gram.		8M
7.	a)	Draw the block diagram of a Fin Finite State Machines.	ite State Model. Explain	the capabilities and limitations of	4M
	b)	For the below state table, find	the equivalence partition	on and a corresponding reduced	
		machine in standard form and also	o explain the procedure.	-	
		PS	N	S, Z	
			X = 0	X = 1	
		A	B, 0	E, 0	
		В	E, 0	D, 0	
		C	D, 1	A, 0	
		D	C, 1	E, 0	1014
		E	В, 0	D, 0	10M

8. a) Draw an ASM chart and state table for 2 bit up-down counter having mode control input. M = 1 up counting; M = 0 down counting

The circuit should generate a output 1 whenever the count becomes minimum or maximum. 7M 7M

b) Draw the ASM chart for Binary multiplier and explain.