Н	all T	icket Number :												
<u> </u>	- de	• 10342]	J	R-11 / R-13
C	Code: 1G342 II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018													
	Electromagnetic Waves and Transmission Lines													
	(Electronics and Communication Engineering)													
N	Max. Marks: 70 Time: 3 Hours													
	Answer any five questions All Questions carry equal marks (14 Marks each)													
		7.41.5	4000			, 、		*****		(.011	
1.	1. a) Describe the relationship between electric field E and electric potential V with related equations													
	b)	What is electric f	flux d	ensi	ty									
2.	a)	Discover convec	tion a	and	cond	uctic	on cui	rrent	S					
	b)	Describe the Co	nduc	tors	in El	ectrio	c field	ls in	mate	erial s	space	Э		
3.	a)	Analyze the Mag	gnetic	: Flu	x der	nsity								
	b)	Compare Magne	etic S	cala	r and	l vec	tor p	otent	ial					
4.		Explain the bour	ndary	con	ditior	n at d	dielec	ctric t	o die	lectr	ic int	erfac	e	
5.		Summarize wave	es in	gene	eral v	with I	neat	wave	e diag	gram	S			
6.		In a nonmagneti	c me	dium	• E =	4sin	n (2	x 10	0 ⁷ t -0	.8 <i>x</i>)a	a _z V/n	n. Fir	nd	
		(i) _r ,												
		(ii) the time a	avera	ige p	owe	r car	ried k	by the	e wa	ve				
7.	a)	Define Propagat	ion C	const	tant									
	b)	The parameters	of the	e line	e are									
		R =650hms/km												
		L = 1.6mH/km												
		C = 0.1 µF/km												
		$G = 2.25 \mu / km$		_		_								
		Calculate the ch	aract	erist	ic im	peda	ance.							
-						-	_							

- 8. a) Discuss on Short Circuit (SC) and Open circuit (OC) Lines
 - b) What is Standing wave and how it produces in transmission lines

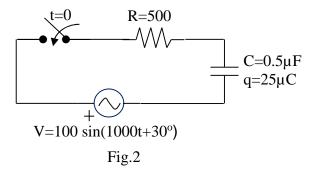
Hall Ticket Number :		
----------------------	--	--

Code: 1G246

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018

Electrical Technology

(Electronics and Communication Engineering)


Max. Marks: 70

Time: 3 Hours

R-11 / R-13

Answer any **five** questions All Questions carry equal marks (**14 Marks** each)

- 1. a) Find the expression for transient response of a series R-L-C circuit excited by a D.C voltage when the switch in closed at t=0.
 - b) Find the transient current i(t) in the R-C series circuit shown in fig.2 .

- 2. a) Derive the relation between 'Y' and hybrid parameters
 - b) A two port network has the following parameters: $Z_{11} = 17 \text{ k}$, $Z_{12} = 12 \text{ k}$, $Z_{21} = 12 \text{ k}$ and $Z_{22} = 15 \text{ k}$. Calculate short circuit parameters.
- 3. a) Classify the different types of filters.
 - b) A proto type high pass filter has a cutoff frequency of 8 kHz and nominal impedance of
 600 . Calculate the values of inductance and capacitance used in the filter.
- 4. Explain T-type attenuator and Lattice attenuator by deriving necessary equations.
- 5. a) In brief explain various losses in a DC generator.
 - b) Draw and explain the load characteristics of i) DC shunt generator ii) DC series generator.
- 6. Classify types of DC motors and write the voltage current relation of each.
- 7. Discuss the importance of open-circuit and short-circuit tests on a transformer, and also explain the procedure for open circuit and short circuit tests with neat circuit diagrams.
- 8. Write short notes on:
 - (a) Stepper motor.
 - (b) Capacitor motor.

	<u> </u>						R-11	/ R-13	;
Hall Ticket Number :						r			

Code: 1G244

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018 Linear Control Systems

(Common to EEE & ECE)


Max. Marks: 70

Answer any **five** questions

All Questions carry equal marks (14 Marks each)

- 1. a) Define open loop and closed loop control system.
 - b) Explain open loop and closed loop Temperature control system with neat sketches.
- 2. a) Explain Block diagram algebra with clear figures
 - b) Use the Block diagram reduction technique to find the transfer function Y(S)/R(S)

- 3. Define Delay time, Rise time, Peak time, Maximum overshoot, Settling time with a neat sketch. And derive expression for any two of the above.
- 4. Determine the stability using Routh Criterion of the closed loop transfer function

 $G(s) = \frac{10}{S^5 + 2S^4 + 3S^3 + 6s^2 + 5S + 3}.$

- 5. Explain the procedure for magnitude and phase plot of Bode plot
- 6. a) Define Polar plot.
 - b) Explain the procedure to determine the Gain margin and Phase margin from Polar plot.
- 7. Explain the procedure for the design of lead compensator in Frequency Domain.
- 8. Estimate the complete state controllability and observability of the system using

Jordan Canonical form
$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -4 & 2 \\ 0 & 0 & -10 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}.$$

Time: 3 Hours

Hall Ticket Number :
Code: 1GC41
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2018 Mathematics-III
(Common to EEE & ECE) Max. Marks: 70 Time: 3 Hours
Answer any five questions All Questions carry equal marks (14 Marks each) ********
1. a) Define Beta function. Prove that $s(m,n) = s(n,m)$
b) Find the value of $\int_{0}^{1} x^{3} \sqrt{1-x} dx$ using s and Γ functions
2. State and Prove Cauchys-Reimann equations in Cartesian form.
3. Find the general and principal values of
a. i^i b. $\log(1+i\sqrt{3})$
4. a) Evaluate $\int_{c} (x+y) dx + x^2 y dy$ from (0,0) to (3,9) along the straight line $x^2 = y$.
b) Find $\int_{c} \frac{1}{(z-1)(z-3)} dz$ with C: $ z = 2$ using Cauchy's integral formula.
5. Expand $f(z) = \frac{z-1}{z+1}$, in Taylor series about the point
(i): z = 0 $(ii): z = 1$
24
6. Using Residue Theorem, Evaluate $\int_{0}^{2f} \frac{1}{5 + 4\cos \pi} d\pi$
7. State and prove Argument principle.
8. Find the fixed points of the transformation
(a) $w = \frac{6z - 9}{z}$ (b) $w = \frac{z - 1}{z + 1}$
$z \qquad z+1 \qquad \qquad$

Hall Ticket Number :	
	R-11 / R-13
Code: 1G341 II B.Tech. II Semester Supplementary Examinations Nov/I Signals & Systems (Electronics and Communication Engineering) Max. Marks: 70 Answer any five questions All Questions carry equal marks (14 Marks each) ********	Dec 2018 Time: 3 Hours
 a) Discuss about Elementary signals with necessary functional a representations. b) Discuss about Orthogonality in complex functions 	and graphical
2. a) State and prove convolution property in Fourier seriesb) Find the cosine Fourier series of a half wave rectified sine function	
 3. a) Find the Fourier Transform of Rectangular pulse. Sketch the signaturansform b) Evaluate the Fourier transform of following signals x(t) = e^{2t} u(-t) sinc function 	al and Fourier
 4. a) Find whether the following system are static or dynamic y(t)= x(t²) y(t)=e^{x(t)} b) Explain Transmission of signals through LTI systems 	
5. a) Determine the energy spectral density (ESD) of a gate function of amplitude A.b) Elucidate the graphical method of Convolution using one example.	of width and
6. State and Prove Sampling Theorem with appropriate equations and s	ketches
 Find the laplace transform of the following signal x(t) = sin for 0 otherwise 	0< t<1 & 0 for
b) Derive the relationship between Laplace and Fourier Transform	
 8. a) Describe about the Periodicity of discrete time using complex exponents b) Enlist the properties of Z-transforms and explain any three. 	ntial signal

Hall Tick	et Number :												r	
Code : 10	G245	<u>I</u>	1	11		1		1			.1		R-11/	/R-13
II E	3.Tech. II Seme	ester S	upp	lem	ent	ary	Exar	ninc	atior	ns N	ov/D)ec	2018	
		vitchi	-		-		_			-				
Max	(El Marks: 70	ectron	ics &	Con	nmu	nica	tion	Engiı	neeri	ing)	Tir	ne.	03 Hou	irs
max.		A	nsw	er ar	ny fi	ve q	luest	ions			•••		00 1100	15
	All Que	estions	s car	ry eq	qual	ma ****	rks (14 N	larks	sead	ch)			
1. a)	Do the following	conve	rsior	IS										
	i) (100)	•)10											
	, ,	25) ₁₀ =(6										
b)	iii) (ECE	, ,)2		hine		um h o	**						7M
b)	Perform followir i)1011010.0001	• •			Dina	ry nu	ambe	IS						
	ii)1010-0101	110100	500.1	1										
	, iii)1111*1000													7M
2. a)	State and prove	the De	e-Mo	rgan'	s the	eorer	ns							8M
b)	Draw the logic s	ymbols	s of le	ogic (gates	s exp	lain t	truth	table	es of	them.			6M
3. a)	Implementation	of the	follov	ving f	funct	ion u	ising	NAN	ID-N	AND	logic			
	F(a,b,c,d)= (1	,3,5,7,9	9,11,	13)										8M
b)	Define Prime in	mplicar	nts, I	Esser	ntial	prim	e im	plica	ints a	and	Selec	tive	prime	CN 4
4. a)	implicants Realize full subt	ractor	ucino	n half	cub	tract	ore							6M
ч. a) b)	Design 3X8 dec			•			JI 5.							6M 8M
5. a)	Construct BCD		-		-			sina l	ρδι					οινι 7Μ
b)	Implement full a					inven		ing i						7M
6. a)	Draw the logic c		-			lexn	lain d	nera	ation					8M
b)	Convert T-FF to	•	1 01 0		and	ionp		pore						6M
7. a)	Discuss about th		abiliti	es ar	nd lir	nitati	ons	of FS	SM					7M
b)	Reduce the nur reduced state ta	nber o				follo	owing			ble a	nd ta	bula	ate the	
						N	S 7							

PS	NS,Z								
го	X=0	X=1							
а	a,0	b,0							
b	d,1	f,0							
С	b,1	a,1							
d	d,1	f,0							
е	e,1	e,1							
f	a,0	b,0							
f	a,0	b,0							

8. Design a control circuit using mux and D- FFs with one input When X=0, the state of the circuit remains the same. When X=1,the circuit goes through the state transition from 00 to 01 to 10 to 11 and repeats

14M

7M