Hall Ticket Number :										
----------------------	--	--	--	--	--	--	--	--	--	--

Code: 1G241

R-11 / R-13

II B.Tech. II Semester Supplementary Examinations October 2020

Electrical Machines-II

(Electrical and Electronics Engineering)

Max. Marks: 70

Time: 3 Hours

Answer any **five** questions All Questions carry equal marks (**14 Marks** each)

- 1. a) Define a transformer? Why the transformer core is laminated?
 - b) An 1100/400 V, 50 Hz single phase transformer has 100 turns on the secondary winding. Calculate the number of turns on its primary, transformation ratio and turns ratio.
- 2. a) What are the various losses taking place in transformer? How these losses can be minimized?
 - b) The No-Load current of a 4400/440V,1- ,50Hz transformer is 0.04A.It consumes power 80 W at no-load when supply is given to LVside and HVside is kept open. Calculate the following : (i) Power factor of no-load current. (ii) Iron loss component of current. (iii) Magnetizing component of current.
- Obtain the approximate equivalent circuit of a 200/2000Vsingle-phase 30kVA transformer referred to 200 V side using the following test results:
 OC test on LV side: 200V, 6.2 A, 360 W
 SC test on HVside:75 V, 18 A,600 W.
- 4. Explain the scott connection of three phase transformer with neat diagram.
- 5. Describe the constructional details of cage and wound rotor induction machines.
- 6. While drawing an useful power of 24KW to the full load. A 3-phase, 415V, 50 Hz, 8 pole Star connected Induction motor draws a line current of 57A. It runs at a speed of 720RPM. The power factor of the motor is observed to be 0.707 lagging. Stator resistance/ph is 0.1 . Mechanical losses are 100W. Calculate (i) Shaft torque, Gross torque and lost torque (ii) Rotor input, rotor copper losses and gross mechanical power developed (iii) Stator iron and stator copper losses (iv) Rotor efficiency and Overall efficiency of motor.
- 7. a) List out the types of starters used for starting of 3 phase induction motors. Explain line starting of an induction motor.
 - b) A 3-phase cage induction motor has a short circuit current equal to 5 times the full load current. Find the starting torque as the % of full load torque, if the motor is started by (i) DOL starter (ii) Star-Delta starter (iii) an Auto Transformer starter with X% tapping. Starting Current in (iii) is to be limited to 2.5 times the full load current. Full load slip is 4%.
- 8. Explain the rotor rheostat control of 3-phase slip ring induction motor.

Hall	Tick	ket Number :	
		GC41 R-11 / R-1	3
COO		B.Tech. II Semester Supplementary Examinations October 2020 Mathematics-III (Common to EEE & ECE)	
Max	x. M	arks: 70 Answer any five questions All Questions carry equal marks (14 Marks each)	ours
1.	a)	Prove that B(m,n)= $\int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$	7M
	b)	Evaluate $\int_0^{\frac{n}{2}} \sqrt{\cot \theta} d$	7M
2.	a)	Prove that $(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})$ Real f(z) $^2 = 2$ f(z) 2 , Where f(z)=w is analytic.	7M
	b)	If f(z)= u+iv is an analytic function and $u - v = \frac{\cos x + \sin x - e^{-y}}{2\cos x - e^{-y} - e^{y}}$, Find f(z) subject to	
		the condition $f(\frac{\pi}{2})=0$.	7M
3.	a)	Separate the real and imaginary parts of (i) tan z, (ii) sechz	7M
	b)	Find all roots of the equation $tanhz + 3 = 0$	7M
4.	a)	Evaluate $\int_0^{3+i} Z^2 dz$, along	
		(i)The line $y = \frac{x}{3}$	
		(ii) The parabola x=3y ² .	7M
	b)	State and prove Cauchy's theorem.	7M
5.	a)	State and prove Laurent's theorem.	7M
	b)	Expand $f(z) = \sin z$ in Taylors series about $z = -\frac{\pi}{2}$	7M
6.	a)	State and prove Cauchy's Residue theorem	7M
	b)	Show that $\int_0^{\pi} \frac{\cos 2\theta}{1 - 2a\cos\theta + a^2} d\theta = \frac{\pi a^2}{1 - a^2} (a^2 < 1)$ Using residue theorem	7M
7.	a)	State and prove Rouche's theorem.	7M
	b)	Prove that the polynomial z^5+z^3+2z+3 has just one zero in the first quadrant of the complex plane.	7M
8.	a)	Show that the transformation $w=z^2$ maps the circle $z-1 = 1$ into the cardioid $r=2(1+\cos\theta)$ where $w = re^{i\theta}$ in the w- plane.	7M
	b)	Find the Bilinear transformation that maps the points 1,i,-1 into the points 2,i,-2	7M

											1]			
Hall Ticket Number :													R-1	1 / R-13	2
Code:				•				_				•			,
I	I B.Tech. II Se	mes			•						ons	Oct	ober	2020	
		(Fle					-		ircu Engir		ing)				
Max.	Marks: 70		Jem	cur	ana	LICC	21101		Ingii		ing j		Tim	ne: 3 Hou	rs
		_				•		•	stion						
All Questions carry equal marks (14 Marks each)															
1. a	a) Define % tilt ramp input.	Define % tilt of RC circuit. Obtain the response of RC high pass circuit for a ramp input.													
b) What is a Di	What is a Differentiator and draw the circuit diagram of a Differentiator.													
2. a	a) Draw the circuit diagram of a DC restorer circuit with and without reference voltage and explain its operation for a sinusoidal input signal.											erence			
b	b) Give the impo	Give the importance of clamping circuits.													
3. a	a) Draw the piec	ewise	e line	ar di	ode d	chara	cteris	stics	and e	expla	in.				
b	b) When transist	When transistor acts as a switch? Explain.													
4. a	a) What are the	effect	ts of	comr	nutat	ing c	apac	itors	in a b	binar	y? Gi	ve rea	asons		
b	 Discuss self-b 	biased	d bina	ary.											
5. a	, .	Why the time base generators are called sweep circuits? Give most important applications of time –base generators.										oortant			
b	 Draw the circu forms. 	Draw the circuit of UJT-time base generator and explain its operation with wave													
6. a	a) Discuss the a	pplica	ations	s of a	sam	pling	gate) .							
b) Write about b	Write about bidirectional diode sampling gate.													
7. a	a) Discuss in de	tail th	e sin	e wa	ve fre	eque	ncy c	livisio	on wit	h a s	weep	o circi	uit		
b	 Compare sine 	e wav	e syr	nchro	nizat	ion v	vith p	ulse	syncl	hroni	zatio	ſ			
8. a	a) With the help	of a r	neat	circui	it dia	gram	for N	IOR	gate	using	g ECL	logic	and e	xplain	
b) Illustrate the 7	ΓTL to	otem	pole	oper		of a **	NAN	ID ga	te.					

Г