Hall Ticket Number : \square

Code: 1G342

R-13

II B.Tech. Il Semester Supplementary Examinations March 2021

Electromagnetic Waves and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours

Answer any five questions
 All Questions carry equal marks (14 Marks each)
 $* * * * * * * * *$

1. a) Explain Gauss's Law and derive the Maxwell equation
b) Describe the applications of Gauss's law in the case of point charge, Infinite line charge and in infinite sheet of charge distribution
2. Simplify the continuity equation and the Relaxation Time
3. a) Explain Ampere Circuits Law with related equations
b) Discuss the applications of Ampere circuits law in the case of infinite long coaxial transmission line
4. a) Determine the Inconsistency of Ampere's Law
b) Determine the motional emf for the moving loop in the static B field
5. Derive α, β and explain waves propagation in lossy dielectrics
6. Explain Reflection of plane wave at Normal incidence
7. a) Derive Condition for Distortion less ness and Minimum Attenuation
b) Define Phase and Group Velocities
8. a) Outline the Input Impedance Relations
b) Write in detail about reflection coefficient

Hall Ticket Number :

R-13

Code: 1GC41

|| B.Tech. II Semester Supplementary Examinations March 2021

Mathematics - III

All Questions carry equal Marks (14 Marks each)

1. a) Evaluate $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta$.
b) Prove that $\beta(m, 1 / 2)=2^{2 m-1} \beta(m, m)$.
2. If $w=\phi+i \psi$ represents the complex potential function for an electric field and $\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$ determine the function ϕ
3 a) If $\cosh (u+i v)=x+i y$ then prove that
$\frac{x^{2}}{\cosh ^{2} u}+\frac{y^{2}}{\sinh ^{2} u}=1$ and $\frac{x^{2}}{\cos ^{2} v}-\frac{y^{2}}{\sin ^{2} v}=1$.
b) Find all the roots of the equation tanhz $+2=0$.
3. Integrate $f(z)=x^{2}+i x$ y from $\mathrm{A}(1,1)$ to $\mathrm{B}(2,8)$ along the curve C given by $x=t, y=t^{3}$
4. a) Find the Taylor's expansion of $f(z)=\frac{1}{(z+1)^{2}}$ about the point $\mathrm{z}=-\mathrm{i}$.
b) Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in the regions (i) $|z|<1$,(ii) $1<|z|<2$.
5. Using Residue Theorem, Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$
6. a) State and prove Rouche's theorem.
b) Prove that the polynomial $z^{5}+z^{3}+2 z+3$ has just one zero in the first quadrant of the complex plane.
7. Find a bilinear transformation which maps the point's $z=1, i,-1$ onto the points $w=0,1, \infty$.

Hall Ticket Number :							

Code: 1G341

R-13

II B.Tech. II Semester Supplementary Examinations March 2021 Signals and Systems

(Electronics and Communication Engineering)
Max. Marks: 70

Answer any five questions

All Questions carry equal marks (14 Marks each)

1. Give a short notes on the following
i) Unit Impulse function
ii) Signum Function
iii) Continuous time complex exponential signal
iv) Orthogonal signal space
2. a) State and prove convolution property in Fourier series
b) Find the cosine Fourier series of a half wave rectified sine function
3. Explicate the following properties of Fourier transform
i. Time shifting
ii. Convolution
4. St iow that the following systems are LTI systems
i) $y(t)=x(t / 4)$
ii) $y(t)=x t+x\left(t^{-4}\right), t \geq 0$

0 ,
5. a) Establish the relationship between Autocorrelation and Power Spectral Density
b) Derive the relationship between convolution and Correlation
6. Write short notes on the following
i) Sampling
ii) Oversampling
iii) Perfect sampling
7. a) State and Prove initial value theorem and final value theorem for Laplace transform
b) Find the Inverse Laplace Transform for $X(s)=2 /\left(s^{2}+3 s+2\right)$
8. a) State and prove z-transform time reversal property
b) Obtain the Z-Transform of $y(n)=3 x(n)+2 x(n-1)$ for $x(n)=3(1 / 2)^{n} u(n)+2(1 / 3)^{n} u(n)$

