ſ	Hall	Ticket Number :										г	
Code: 1G342											R-13		
II B.Tech. II Semester Supplementary Examinations March 2021 Electromagnetic Waves and Transmission Lines (Electronics and Communication Engineering)													
	Max											Time: 3 Hours	
1.	a) b)	Explain Gauss's Law and derive the Maxwell equation Describe the applications of Gauss's law in the case of point charge , Infinite line charge and in infinite sheet of charge distribution											
2.		Simplify the continuity equation and the Relaxation Time											
3.	a) b)	Explain Ampere Circuits Law with related equations Discuss the applications of Ampere circuits law in the case of infinite long coaxial transmission line											
4.	a) b)	Determine the Inconsistency of Ampere's Law Determine the motional emf for the moving loop in the static B field											
5.		Derive , and ex	kplain w	aves p	ropa	gatior	n in Io	ossy (dieleo	ctrics			
6.		Explain Reflection of plane wave at Normal incidence											
7.	a) b)	Derive Condition for Define Phase and				ss ar	nd Mi	nimu	m Atl	tenua	ation		
8.	a) b)	Outline the Input Ir Write in detail about	•			ent	**						

Hall Ticket Number :													
Code: 1GC41 R-13													
II B.Tech. II Semester Supplementary Examinations March 2021													
Mathematics – III													
(Common to EEE & ECE) Max. Marks: 70 Time: 3													
Answer any five questions													
All Questions carry equal Marks (14 Marks each)													
f/2													
1. a) Evaluate $\int_{0}^{f/2} \sqrt{\tan \pi} d_{\pi}$.													
v													
b) Prove that $S(m, 1/2) = 2^{2m-1}S(m, m)$.													
2. If $w = w + i\mathbb{E}$ represents the complex potential function for an electric field and													
$\mathbb{E} = x^2 - y^2 + \frac{x}{x^2 + y^2}$ determine the function w													
	14M												
3 a) If $cosh(u+iv)=x+iy$ then prove that													
$\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1 \text{ and } \frac{x^2}{\cos^2 v} - \frac{y^2}{\sin^2 v} = 1.$	7M												
b) Find all the roots of the equation tanhz+2=0.	7M												
4. Integrate $f(z) = x^2 + ixy$ from A(1,1) to B(2,8) along the curve C given	ı by												
$x = t, \ y = t^3$	- 14M												
	14101												
5. a) Find the Taylor's expansion of $f(z) = \frac{1}{(z+1)^2}$ about the point z=-i.													
1	7M												
b) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the regions (i) $ z < 1$,(ii) $1 < z < 2$.	7M												
\sim r^2													
6. Using Residue Theorem, Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$													
	14M												
7. a) State and prove Rouche's theorem.	7M												
b) Prove that the polynomial $z^5 + z^3 + 2z + 3$ has just one zero in the first quad of the complex plane.	rant 7M												
8. Find a bilinear transformation which maps the point's $z = 1, i, -1$ onto the point													
$w = 0, 1, \infty$.	14M												

Hall T]			
Hall Ticket Number :								R-13						
	II B.Tech. II Se (E Marks: 70	emes lectrc Quest	onic: A	Sig s an Answ	nals d Co ver c	s an omn any f	id Si nuni ive (yste cati	ems on E stion	ngir s	neeri	ng)	arch 2021 Time: 3 H	ours
1.	Give a short not i) Unit Imp ii) Signum I iii) Continuc iv) Orthogor	ulse fui Functic ous time	nctic on e co	on mple	x exp	oone	ntial	signa	al					
2. a) b)	State and prove convolution property in Fourier series Find the cosine Fourier series of a half wave rectified sine function													
3.	Explicate the following properties of Fourier transform i. Time shifting ii. Convolution													
4.	Show that the following systems are LTI systems i) $y(t)=x(t/4)$ ii) $y(t) = x t + x(t-4), t \ge 0$ 0, $t < 0$													
5. a) b)	Establish the relationship between Autocorrelation and Power Spectral Density Derive the relationship between convolution and Correlation													
6.	Write short note i) Sampling ii) Oversam iii) Perfect s) Ipling		llowir	ng									
7. a) b)	State and Prove initial value theorem and final value theorem for Laplace transform Find the Inverse Laplace Transform for X (s) = $2/(s^2+3s+2)$													
8. a)	State and prove	z –trar	nsfoi	rm tir	ne re	vers	al pro	opert	у					

b) Obtain the Z-Transform of y(n)=3x(n)+2x(n-1) for $x(n)=3(1/2)^n u(n)+2(1/3)^n u(n)$