0					J	1	R-11 / R-13
Hall Ticket Number :							

Code: 1G246

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Electrical Technology

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours

Answer any **five** questions All Questions carry equal marks (**14 Marks** each)

- 1. a) Show that current in a series RL circuit exited by a dc source of voltage V is $I = (V/R)(1-e^{-(R/L)t}) A$.
 - b) In the circuit shown in fig.1, find the expression for current i(t)

Fig.1

- 2. a) Define and obtain open circuit impedance parameters by taking any one example.
 - b) A two port network has the following parameters: $Z_{11}=20$, $Z_{12}=5$, $Z_{21}=20$ and $Z_{22}=15$. Calculate Short circuit parameters
- 3. Design a T-section constant K- high pass filter having cut-off frequency of 12 kHz and nominal impedance R_0 = 500 . Also find: (i) Its characteristic impedance and phase constant at 24 kHz and (ii) attenuation at 4 kHz.
- 4. a) Design T-type attenuator.
 - b) Design a symmetrical T-type attenuator to provide attenuation of 20 dB. Take characteristic impedance=75 .
- 5. a) Explain the operating principle of a DC generator in detail.
 - b) A 4-pole wave connected DC generator having 60 slots on its armature with 6 conductors per slot, runs at 750 rpm and generates an open circuit voltage of 230 V. Find the useful flux per pole.
- 6. Explain the characteristics of DC shunt and series motors.
- 7. Explain the principle of operation of single phase transformer under no load and load conditions with neat phasor diagrams.
- 8. Write a short notes on :
 - (a) Synchros.
 - (b) AC tachometer.

Hall Ticket Number :									 Г
----------------------	--	--	--	--	--	--	--	--	---------

Code: 1G244

R-11 / R-13

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Linear Control Systems

(Common to EEE & ECE)

Max. Marks: 70

Time: 3 Hours

Answer any **five** questions All Questions carry equal marks (**14 Marks** each)

- 1. Explain in detail about the classification Systems.
- 2. a) Explain Masons gain formula in detail
 - b) And also obtain the transfer function using Masons gain formula for the signal flow graph shown below.

- 3. a) Explain in detail about Test Signals with figures and also discuss their importance.
 - b) A servomechanism has its moment of inertia 10x10⁻⁶ Kg-m², retarding friction 400x10⁻⁶ Nm/rad/sec. The output torque is 0.004 Nm/rad error. Find the natural frequency and damping factor of the system.
- 4. a) Determine the stability using Routh Criterion of the closed loop transfer function

$$G(s) = \frac{10}{S^5 + 2S^4 + 3S^3 + 6s^2 + 5S + 3}.$$

- b) Explain about BIBO stability.
- 5. a) Define Bode plot.
 - b) Discuss about basic factors while drawing the bode plot
- 6. a) Define Type number and order number of a system.
 - b) Sketch the polar plot for the feedback system whose OLTF is $G(s) = \frac{1}{S(1+S)(1+2S)} \ .$
- 7. Explain the procedure for the design of lag compensator in Frequency Domain.
- 8. a) Obtain the Solution of homogeneous state equation.
 - b) Obtain the state space representation for the System $\frac{Y(S)}{U(S)} = \frac{S+6}{S^2+5S+6}$.

0]	R-11 / R-13
Hall Ticket Number :							

Code: 1GC41

Max. Marks: 70

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Mathematics-III

(Common to EEE & ECE)

Time: 3 Hours

Answer any **five** questions All Questions carry equal marks (**14 Marks** each)

1. a) Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{f}$ 7M b) Evaluate $\int_{0}^{f/2} \sqrt{\tan \pi} d\pi$ 7M

2. Given f(z) = u + iv is an analytic function of z and if $u = \frac{1}{2}\log(x^2 + y^2)$ find f(z) in terms of z. 14M

3. a) Given
$$\operatorname{Sin}(x + i y) = u + i v$$
 then show that
 $u^2 \operatorname{Cos} ec^2 y = v^2 \operatorname{S} ee^2 x = 1$
7M

b) Prove that
$$4(a^2 - b^2) = \frac{x}{a} + \frac{y}{b}$$
 if $(x + iy)^{\frac{1}{3}} = a + ib$ 7M

4. a) Using Cauchy's integral formula evaluate $\int_{c} \frac{\sin^2 z}{\left(z - \frac{f}{6}\right)^3} dz$ where C is unit circle. 7M

b) Find
$$\int_{c} z^2 dz$$
 along the straight line from $z = 0$ to $z = i$ 7M

5. Obtain Taylor Series to represent the function $f(z) = \frac{e^z}{z(z+1)}$, in the region |z| = 2

6. Evaluate the real integral
$$I = \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$
 by the method of Residue Theorem 14M

- 7. Show that one root of the equation $z^4 + z + 1 = 0$ lies in the first quadrant of the complex plane. 14M
- 8. Define bilinear transformation. Find the bilinear transformation that maps the points z = 2, i, -2 into the points w = 1, i, -1 respectively. 14M

Hal	l Ticl	ket Number :											
Cod	l e : 1	G341 R-11 / R-13											
	II	B.Tech. II Semester Supplementary Examinations Nov/Dec 2019											
		Signals and Systems (Electronics and Communication Engineering)											
Ма	ix. M	Time: 3 Hours											
		Answer any five questions All Questions carry equal marks (14 Marks each) ********											
1.	a)	Enumerate the Basic operations on signals with examples and diagrams											
	 Explain the concept of Signal approximation using orthogonal functions with necessary derivations 												
2.	a)	Write short notes on Dirichlet's conditions for Fourier series											
	b)	State and prove following properties of DTFS: (i) Time shifting. (ii) Frequency shifting.											
3.		Define Fourier Transform Pair. State and Prove any three properties of Fourier Transform.											
4.	a)	Find whether the following system are static or dynamic i) $y(t) = x(t^2)$ ii) $y(t) = e^{x(t)}$											
	b)	Explain Transmission of signals through LTI systems											
5.	a)	Evaluate the convolution of the two signals $x(t) = e^{-2t} u(t) h(t) = u(t+2)$											
	b)	Derive the Convolution property of Fourier transforms											
6.		State and Prove Sampling Theorem with appropriate equations and sketches											
7.	a)	Find the laplace transform of the following signal $x(t) = sin^{tions ar} < t < 1 & 0$ for otherwise											
	b)	Derive the relationship between Laplace and Fourier Transform											
8.	a)	Describe about the Periodicity of discrete time using complex exponential signal											
	b)	Enlist the properties of Z-transforms and explain any three.											

Hall Ticket Number :

Code : 1G245

Max. Marks: 70

R-11/R-13

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019 Switching Theory and Logic Design

(Electronics & Communication Engineering)

Time: 3 Hours

Answer any **five** questions All Questions carry equal marks (**14 Marks** each)

- 1. a) Encode BCD numbers in 5421, and 84-2-1 weighted codes
 - b) Perform following operations using 2's complement
 - i) (25)₁₀-(19)₁₀
 - ii) (33)₁₀-(43)₁₀
- 2. a) List out the properties of XOR gate and draw the various symbols of it.
 - b) Realize given Boolean function using NAND gatesF = ab+bc+ca
- 3. Derive the minimal solution for a given Boolean function using tabulation method

F (a, b, c, d, e, f) = (6, 9, 13, 18, 19, 25, 27, 29, 41, 45, 57, 61) and find out the essential and selective prime implicants.

- 4. a) Design 4-bit Ripple carry adder and explain operation of it.
 - b) Design Full adder using decoder and additional logic
- 5. a) Differences between ROM, PLA and PAL
 - b) Realize a circuit which generates the square of a 4-bit binary number by using ROM
- 6. a) Derive characteristic equations of RS-FF and T-FF
 - b) Design a circuit which generate the following sequence 0,1,3,5,6 and repeat using JK-FFs
- 7. a) What is meant by implication table?
 - b) Determine a minimal state table equivalent to the given state table using merger chart method

PS	NS	6,Z
	X=0	X=1
1	1,0	1,0
2	1,1	6,1
3	4,0	5,0
4	1,1	7,0
5	2,0	3,0
6	4,0	5,0
7	2,0	3,0

- 8. a) Explain basic building blocks of ASM chart
 - b) Draw the ASM chart for 3-bit synchronous counter

Hall	Tick	et Number :														
Cod	م. 1(2342												R-11	/ R-1	3
Cou			nes	ter S	aug	oler	nen	tarv	Exc	amir	natio	ons	Nov	/Dec 2	2019	
II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019 Electromagnetic Waves and Transmission Lines																
				-	cs ar											
Max	к. М	arks: 70												Time	e: 3 Ho	Urs
		A 11 -	• •		Ansv		,		•				- 1- 1			
		All	QUe	stior	is cc	irry e	•	31 MC *****		(14/	Mark	s ec	ich)			
1.	a)	State and exp	olain t	he c	oulon	ıb's l	aw w	vith su	uitabl	e eq	Jatior	ns an	d dia	gram		7M
	b)	Point charges	of 1	mC a	and -2	2mC	are lo	ocate	d at ((3,2,-	1) an	d (-1	,-1,4)	respecti	ively.	
		Calculate the electric force on a 10nC charge located at (0,3,1). 7M											7M			
2.		Elaborate Pol	arizat	tion i	n Die	lectri	CS									14M
3.	a)	State and exp	olain E	Biot s	avar	t law										10M
	b)	List Maxwell's	Equ	ation	s for	Stati	c EM	Field	ds							4M
4.	a)	Derive the dis	place	emen	t curi	rent o	densi	ty								7M
	b)	List and expla	in Ma	axwe	ll's eo	quation	ons i	n fina	l forn	ns						7M
5.	a)	Write equation	ns of	an	d.E	Expla	in Pl	anes	wave	es in	Loss	less d	dielec	trics		7M
	b)	Compare the	propa	agati	on of	wave	es in	Loss	y and	lloss	less	diele	ctrics			7M
6.		Express Point	tina V	/ecto	r and	Poir	ntina	Theo	rem	with i	neat (diadra	am ai	nd equati	ions	14M
0.			ung v	0010		1 011	iting	11100		, , , , , , , , , , , , , , , , , , ,	iour	liagit		ia oquat		ויודי
7.		Derive Transr	nissio	on lin	e equ	uatio	n in te	erms	of vo	oltag	e and	l curr	ent			14M
8.	a)	Define input in	nped	ance	and	list it	s rela	ations	6							7M
	b)	Write a short	note	on V	SWR											7M
