Hall Ticket Number :						Ì

Code: 4GC43

R-14

II B.Tech. II Semester Supplementary Examinations May 2018

Environmental Science (Common to CE, ME and CSE) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) UNIT-I 1. a) Define the term environment and explain scope and importance of environmental studies. 7M b) Write a short note on Biosphere and atmosphere. 7M 2. a) Describe the term environmental education. 7M b) Explain the role of people and organizations related to provide environmental awareness. 7M UNIT-II a) Write about the uses and mineral reserves of India. 7M b) Explain the environmental impacts of over exploitation of mineral resources. 7M OR a) Write about the various applications and environmental impacts of any two fossil fuels. 7M b) Briefly explain the effects of pesticides. 7M UNIT-III Define the term ecosystem and explain the structural aspects of forest ecosystem. 5. 7M b) Write a note on carbon cycle and nitrogen cycle. 7M a) Explain various values of biodiversity. 7M 6. b) Discuss ex-situ conservation strategies in detail. 7M **UNIT-IV** a) Write about effects, classification of pollutants and control measures of air pollution. 7. 7M Explain sources, effects and control measures of thermal pollution. 7M OR 8. Explain various municipal solid waste management practices in detail. 7M Explain briefly impacts of marine pollution with any case study. 7M UNIT-V 7M 9. a) Write in detail about acid rain. b) Explain water pollution prevention and control act. 7M OR 10. a) Define the term population explosion and explain reasons and impacts of 7M population growth. b) Write a short note on human rights. 7M

	На	ll Ticket Number :]
	Coc	le: 4G642									R-14	
		II B.Tech.			es an		drau	lic Ma	nination chine r	-	2018	
		Max. Marks: 70 Answer all five un	its by c	choosi	·		stion	- ,	ach unit		Time: 3 Ho 4 = 70 Mar	
							NIT–I					
1.	a)	Explain the theory of	of lamina	ar boun	dary la	yer co	ncept.					7M
	b)	A thin plate is moving width is 0.5m. Calculon one side of the p	ulate (i)	the thic	ckness	of the	bound	dary laye	r at the e	nd of the	plate (ii) dr	ag force
		•			,		OR					
2.	a)	Explain the theory of	of turbul	ent bou	ındary	layer c	oncep	t.				7M
	b)	Discuss the method	ls adopt	ted to p	revent	the bo	undary	y layer se	eparation			7M
							NIT–II					
3.	a)	Explain sub-critical,			•							7M
	b)	Find the velocity of deep, when it is run as 55.						•	•			
							OR					
4.	a) b)	Describe the conce The depth of flow of discharge through the	of water	at a c	ertain	section	of a	rectangu	ılar chanı	nel of 4m		
		find the depth of flow	w after t	the jum	p.							7M
							NIT-III					
5.	a)	given by $F_X = a V^2$	sin²	•					•			7M
	b)	A jet of water of t symmetrical plate a the jet is deflected t	t the ce	ntre. Fi	nd the	force e	exerted	d by the j	et of wate	er in the		
6.	a)	Derive an expression	on for ef	ficiency	of ser	ies of r	adial o	curved va	anes.			7M
	b)	A jet of water having of 20m/s. The jet mat an angle of 120°.	akes an Draw tl	angle o	of 30º to city tria	o the di angles a	rection at inlet	n of motion	on of vand let and fir	es when	•	•
		(i) The work do (ii) The efficiend	-	unit wa	it of wa	ater ent	ering	the vane				7M
_	,					l	JNIT–	IV				⊸ s. a
7.	a)	Classify the Hydrau			t anaa	d of 10)m/o	ith a iat	of water	flouring	t the rote of	7M
	b)	A pelton wheel has under a head of 30r by water to the run	n. the b	uckets	deflect	the jet	throug	gh an an	gle of 160	0º. Calcu	late the pow	er given
		0.98.					0.0					7M
8.	a)	What is the significa	ance of s	specific	speed	of a tu	OR rbine a	and deriv	e an exp	ression fo	or the specif	ic speed 7M
0.	b)	A turbine is to opera		•	•				•		-	•
	-,	90% determine (i) S				e of tur		iii) Powe	•			7M
9.	a)	Explain the worki	ing princ	ciple of	a centi	rifugal _l	pump.					7M
	b)	A centrifugal pum design speed of 10 the periphery. The	000 r.p.ı	m. The	vanes	are cui	rved b	ack to ar	n angle of	f 30° with	l	
		Determine the disc	•				netric (7M
10	٥)	Docaribo tha imment	onoo of	multica	2000 00	ntrif	OR	nnc.				7M
10.	a) b)	Describe the import Find the number of							well unde	er a total	head of 89 r	
	-,	pumps are identica while the rated capa	l and ar	re runni	ing at 8	800 r.p	.m. th	•				
						ተ ተ	*					

Hall ⁻	Tick	et Number :													
Code	: 4G	C42												R-14	
	II	B.Tech. II S	Sem						•			atior	ns Mo	ay 2018	
							ity (
Max	. Mc	arks: 70		((COH	IIIO	n to	CE,	<i>I</i> VI⊏ (ana	11)			Time: 3 Ho	ours
A	Nnsw	er all five uni	ts by	cho	osino	g on		estio ****		m e	ach (ınit (5 x 14	= 70 Marks)	
							U	JNIT	– I						
1	a)				•			•						is chosen at	
		random fror exactly 2 gir					he p	roba	bility	that	t (i) 3	3 boy	s are	selected (ii)	7M
	b)	, 0					B. C	: ma	nufa	cture	20%	5. 30 ^o	% and	d 50% of the	<i>1</i> IVI
	/		•											t is drawn at	
														s that it is	71.4
		manufacture	a IIO	111 (1)	iviac	riirie	A. (I	ı) iviz OF		e D.	(III) IV	iaciii	ne C.		7M
2	a)	A random va	ariabl	le X i	is de	fined	l as t	he s	um c	f the	num	bers	on the	e faces when	
		two dice are			_			_						10.11	7M
	b)	A sample of which 5 are											•	g 12 items of	7M
		Willow & allo	4010	J., V.		0		JNIT-		1100	_ 0.	uoio		.01110.	7
3	a)	Ten coins a	re th	rown	sim	ultar	neous	sly. F	ind	the	proba	bility	of ge	tting at least	
		seven heads		,		,									7M
	b)	frequencies	on als	stribu	ition	tor	tne t	OIIOW	ving	aata	and	caici	Jiate t	the expected	
						Х	0	1	2	3	4				
						f(x)	109			2 3	1				7M
	- \	1 1	al' a ta	9	0.	10/ -	.	OF			.1		1.00/		
4	a)	Find the me									ider 4	is an	a 8%	are over 64.	7M
	b)										tain t	est is	s 14 a	and standard	
						_			ution	to	be n	orma	al, find	d how many	
		students sco	ore be	etwe	en 12	2 and									7M
5		A population	n con	sists	of fi	ve n	L	INIT- ers 2		S. 8 a	and 1	1. Co	onside	r all possible	
														nt from this	
				,				•	•		•			d deviation of	
			•						. •					s and d) The the standard	
		error of mea					, ,	,					,		14M
6	٥/	A normal a	anula 1	tion	hac	2 m	aan 1	OF		d c+c	ndar	4 40	iation	of 2.1. Find	
0	a)	the probabili	•												7M
	b)	•	•				•							of 0.5060 cm	
											•			nay be taken % confidence	

interval for the actual average diameter of the bearings?

7M

Code: 4GC42

UNIT-IV

7 a) An ambulance service claims that it takes on the average less than 10 minutes to reach its destination in emergency calls. A sample of 36 calls has a mean of 11 minutes and the variance of 16 minutes. Test the claim at 0.05 level significance

7M

b) The mean yield of wheat from a district A was 210 pounds with S.D. 10 pounds per acre from a sample of 100 plots. In another district the mean yield was 220 pounds with S.D.12 pounds from a sample of 150 plots. Assuming that the S.D of yield in the entire state was 11 pounds, test whether there is any significant difference between the mean yield of crops in the two districts.

7M

OR

8 a) 20 people were attacked by a disease and only 18 survived. Will you reject the hypothesis that the survival rate if attacked by this disease is 85% in favour of the hypothesis that is more at 5% level.

7M

b) A sample of 26 bulbs gives a mean life of 990 hours with a S.D of 20 hours. The manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not upto the standard.

7M

UNIT-V

9 a) The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at 10% significant level, test whether the two populations have the same variance.

Unit-A	14.1	10.1	14.7	13.7	14.0
Unit-B	14.0	14.5	13.7	12.7	14.1

7M

b) The number of automobile accidents per week in a certain community are as follows: 12, 8, 20, 2,14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period.

7M

OR

10 a) In one sample of 10 observations, the sum of the squares of the deviations of the sample values from sample mean was 120 and in the other sample of 12 observations, it was 314. Test whether the difference is significant at 5% level?

7M

b) Four coins were tossed 160 times and the following results were obtained.

No. of heads	0	1	2	3	4
Observed frequencies	17	52	54	31	6

Under the assumption that coins are balanced, finds the expected frequencies of 0, 1, 2, 3 or 4 heads, and test the goodness of fit at a level of significance 0.05?

7M

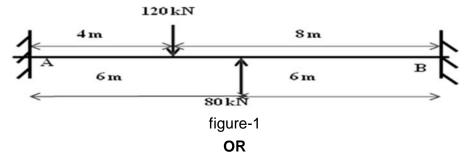
Hall Ticket Number :

Code: 4G643

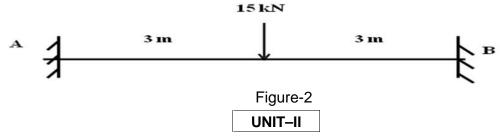
R-14

II B.Tech. II Semester Supplementary Examinations May 2018

Structural Analysis-I


(Civil Engineering)

Max. Marks: 70 Time: 3 Hours


Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. A beam AB of 12m span has fixed ends as shown in Figure 1. It carries a downward load of 120 kN at 4 m from end A and an upward load of 80 kN at 6 m from end B. Calculate the fixed end moments and also draw the BMD.

2. A fixed beam of span 6 meters shown in Figure 2 carries a concentrated load of 15kN at 3 meters from the left end. If the right end sinks by 10mm, find the fixed end moments at the supports. For the beam section take I=300,000 mm⁴ and E=2x10⁵ kN/mm². Find also the reactions at the supports.

 A continuous beam ABC consists of two consecutive spans AB and BC of 4m each, it carries a u.d.l of intensity 60kN/m run over its entire span. The end A is fixed and ends B& C are simply supported. Determine the moments & reactions at the supports and Also draw SFD and BMD.

OR

4. A continuous beam ABC having spans AB and BC of lengths 3m and 4m respectively. Span AB carries a udl of 5kN/m and Span BC carries a udl of intensity 8kN/m. Determine the moments at the supports A,B &C.Also draw SFD and BMD.Take $I_{AB}=I$ and $I_{BC}=2I$.Supports A,B&C are simply supported.

UNIT-III

5. A beam ABCD, 16 m long is continuous over three spans and loaded as shown in figure-3. Using Slope Deflection method calculate the final moments and reactions at the supports. Also draw SFD and BMD.

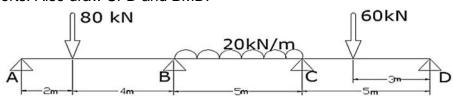
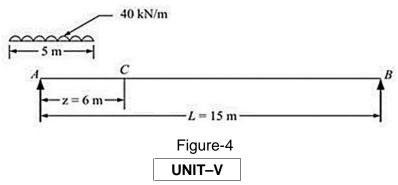
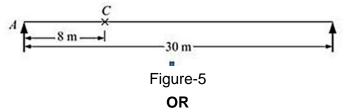


Figure-3

Code: 4G643


6. A continuous beam ABCD is fixed at A and D and is supported on rollers at B and C. It carries a udl of intensity 20kN/m over span AB and an udl of 10kN/m over span BC. It also carries a concentrated load at middle point of span CD. Analyze the beam by Moment Distribution method when Support B sinks by 10mm. Take L_{AB}=L_{CD}=6m, L_{BC}=3m; E=2x10⁵N/mm², I=1.6x10⁸mm⁴. Draw Bending moment diagram.

UNIT-IV


7. A simply supported beam of span 'L' carries a Concentrated load 'P' at a distance of 'a' from left support A .Using Castigliano's theorem determine the deflection under the load .Assume uniform flexural rigidity.

OR

8. A s.s beam has a span of 15m, a uniformly distributed load of intensity 40kN/m and 5m long crosses the girder from left to right as shown in figure 4. Determine the Shear Force and Bending Moment at a section 6m from the left support.

9. Four point loads 8kN,12kN,16kN,and 10kN having a c/c spacing of 2m between consecutive loads and they traverse a girder of 30m span as shown in the figure 5 with 10kN loading. Calculate the maximum bending moment and shear force at 8m from the left support.

- 10. Define D_{SI} and D_{KI} . Also determine the D_{SI} and D_{KI} of the following structures.
 - i) Fixed beam AB of span L meters
 - ii) Simply supported beam AB of span L meters with support A hinged and support B roller

	На	II Ticket Number :						
	Co	de: 4G641						
	CO	II B.Tech. II Semester Supplementary Examinations May 2018						
		Strength of Materials-II						
		(Civil Engineering)						
	Μ	ax. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************						
		UNIT-I						
1.	a)	Distinguish between thin cylinder and thick cylinder?	6M					
	b)	Write equations for radial stress and hoops stress as per Lame's theory	8M					
		OR						
2.		A steel cylinder (thick) of 300 mm external diameter is to be shrunk to another steel cylinder of 150 mm internal diameter. After shrinking the diameter at the junction is 250 mm and radial pressure at the common junction is 28 N/mm ² . Find the original difference in radii at the junction. Take $E = 2x10^5 \text{ N/mm}^2$.	14M					
		UNIT-II						
3.	a)	A 50 kW has to be transmitted at 150 R.P.M. Find the necessary diameter of solid circular shaft. Find necessary hollow shaft with internal diameter equal to 3/4 of external diameter. What will be the % savings in the weight of the shaft? Allowable shear stress is 90 N/mm² and density of the						
		material is 7g/cm ³ .	7M					
	b)	other end in a length of 2 m. Also, find the % error committed in calculating, if it is calculated on the basis if an average diameter of 55 mm.						
4.		OR Derive the maximum shear stress induced, in the wire of a closed-coiled helical spring which						
٦.		·	14M					
5.	a)	Derive the equation for the Euler's crippling load for a column with both ends hinged.	7M					
	b)	What is Prof. Perry's formula explain briefly	7M					
c	۵)	OR						
6.	a)	A cast iron hollow column of 200 mm external diameter and 160 mm internal diameter is 4 m long. It is fixed at its both ends and subjected to an eccentric load of 150 kN. Determine the maximum eccentricity, in order that there is no tensionany where in the section. Take $E = 0.94 \times 10^5 \text{ N/mm}^2$.	7M					
	b)	Derive of Euler's critical load formulae for various end conditions	7M					
_		UNIT-IV						
7.		A square chimney, 30 m high, has a flue opening of size 1.5 m x 1.5 m. Find the minimum width required at the base for no tension if the masonry weights 20 kN/m³ and the wind pressure is 1.5 kN/m². The permissible stress in the masonry is 1kN/m². OR	14M					
8.		A masonry retaining wall of trapezoidal section is 12m high and retains earth which is level up to						
		, , , , , , , , , , , , , , , , , , , ,	14M					
^	د.	UNIT-V	71.4					
9.	a)	Explain in brief how stresses in beams due to unsymmetrical bending is considered	7M					
	b)	Explain the brief the method to locating shear center OR	7M					
10.		A standard I-beam is bent by equal and opposite couples M acting at the ends of the beam in the plane m-m. Find the maximum stress and the maximum deflection. I=2400mm ⁴ , Iv=150cm ⁴ ,	14M					