Code: 4GC42

II B.Tech. II Semester Supplementary Examinations August 2021
Probability \& Statistics
(Common to CE, ME and IT)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define the following (i) Sample Space (ii) event (iii) Outcome (iv) Probability
b) Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and15 orange marbles, with replacement being made after each drawing. Find the probability that (i) both are white (ii) first is red and second is white.

OR

2. a) State and prove Addition theorem on probability for two events.
b) If two dice are throw, Find the probability of getting a sum is 10

UNIT-II

3. A random variable X has the following probability function

X	0	1	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	K	2 K	2 K	3 K	$\mathrm{~K}^{2}$	$7 \mathrm{~K}^{2}+\mathrm{K}$

Find the value of K , (ii)Evaluate $p(0<x<5)$, (iii) Evaluate $p(x<5)$
OR
4. The mean and variance of a binomial variable X with parameters n and p are 16 and 8 . Find $P(x \geq 1)$ and $P(x>2)$

UNIT-III

5. A population consists of the four numbers 3, 7, 11, 15. Consider all possible samples of size 2 which can be drawn with replacement from this population. Find the population mean and standard deviation, and mean and standard deviation of the sampling distribution of means.

OR

6. It is desired to estimate the mean number of hours of continuous use untila certain computer will first require repairs. If it can be assumed that $\sigma=48$ hours, how large abe needed so that one will be able to assert with 90% confidence that the sample mean is off by at most 10 hours.
|| B.Tech. II Semester Supplementary Examinations August 2021

Structural Analysis-I

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Derive the equation for a Fixed beam carrying UDL over the entire span with neat sketch.

OR

2. A fixed beam $A B$ of length 6 m carries a point loads of 160 KN and 120 KN at a distance of $2 m$ and $4 m$ from the left end of A. Find the Fixed end moments and the reactions at the supports. Draw B.M and S.F diagrams.

UNIT-II

3. A Continuous beam $A B C$ covers two consecutive span $A B$ and $B C$ of lengths 4 m and 6 m , find the supports moments at A, B \& C .

OR

4. A continuous beam $A B C$ consists of a two consecutive spans $A B$ and $B C 4 m$ each and Find the support moments and reactions.

UNIT-III
5. Explain step by step procedure of Moment Distribution method with suitable example.

OR
6. A continuous beam ABCD consists of three span, and loaded as shown in figure. End A \& D are fixed. Determine the bending moments at the supports.

7. a) What are influence lines?
b) Derive the influence line diagram for an simply supported beam with neat sketch

OR

8. In a simply supported beam $A B$ of span 20 m , determine the maximum bending moment and shear forces at a section 5 m from A, due to the passage of a UDL of intensity $20 \mathrm{KN} / \mathrm{m}$, longer than the span.

UNIT-V

9. Derive Castigliano's first theorem with neat sketch.

OR

10. Find the deflection at the free end of a cantilever of length L carrying a uniform distributed load of W per unit run over the whole span. Assume uniform flexural rigidity.

Code: 4G641

II B.Tech. II Semester Supplementary Examinations August 2021
 Strength of Materials - II

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A boiler shell is to be made of 20 mm thick plate having a limiting tensile stress of $135 \mathrm{~N} / \mathrm{mm}^{2}$. If the efficiency of the longitudinal joints and circumferential joints are 80% and 40% respectively, determine the maximum permissible diameter of the shell for an internal pressure of $3 \mathrm{~N} / \mathrm{mm}^{2}$
b) A thin cylindrical shell of 90 cm diameter, 1 cm thick and 4 m long is subjected to an internal pressure of $3 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the change in length, diameter and volume of the shell. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio, $=0.3$.

OR
2. A compound cylinder is formed by shrinking one cylinder on to another. The final dimensions are: Internal diameter $=15 \mathrm{~cm}$, External diameter $=30 \mathrm{~cm}$, and diameter at junction $=25 \mathrm{~cm}$. The shrinkage pressure is 10 MPa . Calculate the shrinkage allowance. What is the minimum temperature to which the outer cylinder must be heated so that it can be slipped on? Take $\boldsymbol{\alpha}$ for material of outer cylinder $=0.6 \times 10^{-5} /{ }^{\circ} \mathrm{C}$.

UNIT-II

3. a) What are the assumptions made in the theory of pure torsion
b) Hollow shaft transmits 200 kW of power at 150 rpm . The total angle of twist in a length of 5 m of the shaft is 3^{0}. Find the inner and outer diameters of the shaft if the permissible shear stress is 60 MPa . Take $\mathrm{G}=80 \mathrm{GPa}$.

OR

4. A leaf spring carries a central load of 2.5 kN . The leaf spring is to be made of 10 steel plates 6 cm wide and 5 mm thick. If the bending stress is limited to $100 \mathrm{~N} / \mathrm{mm}^{2}$, determine length of the spring and deflection at the centre of the spring. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

UNIT-III

5. A 2 m long column has a circular cross-section of 7 cm diameter. One of the ends of the column is fixed in direction and position and other end is free. Taking factor of safety as 4, calculate the safe load using Rankine's formula. Take $\sigma c=550 \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{a}=1 / 1600$ for pinned ends

OR

6. A simply supported beam of length 4.5 m is subjected to a uniformly distributed load of $35 \mathrm{kN} / \mathrm{m}$ over the hollow span and deflects 18 mm at the centre. Determine the crippling loads when this beam is used as a column with one end fixed and other end hinged.

UNIT-IV

7. a) Find an expression for the maximum and minimum stresses when a rectangular column is subjected to a load, which is eccentric to $Y-Y$ axis.
b) What is Core of a section? Derive the expression for a rectangular hollow section.

OR

8. A hollow circular cast iron column of 25 cm external diameter and 2 cm thickness carries a load of 100 KN in the vertical plane at an eccentricity of 8 cm . Determine the maximum and minimum stresses developed in the material.

UNIT-V
9. Derive the expression of bending stress and inclination of neutral axis for a beam subjected to unsymmetrical bending

OR

10. Determine the principal moment of inertia for unequal angle section $60 \times 40 \times 6 \mathrm{~mm}$ shown in figure below.

