Code: 4GC41

II B.Tech. II Semester Supplementary Examinations March 2021

Mathematics-III

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

		Marks	co	$\underset{\text { Level }}{\text { Blooms }}$
	UNIT-I			
1. a)		7M	2	II
	Find all the roots of	7M	2	1
	oots of $\operatorname{Sin}^{2} z=$			
2. a)		7M	2	11
b)	Find all values of z which satisfy $=\underline{=} \underline{(\underline{n}}-2$.	7M	2	I
	UNIT-II			
	Show that	7M	1	1
	Find all the values of k such that	7M	1	I

4. a) Show that the function ${ }^{\text {ich that }}{ }^{\circ}(z)=e^{3}$ not analytic at the origin, although Cauchy- Riemann equations are Satiofied at the point.
b) Find k such that

UNIT-III

5. a) Evaluate $\int_{C}=2 d \approx=$ whore c is the straight line segment from $O(z=0)$ to $A(z=2+i)$.

OR

 with the vertices at $1 \pm i$ and $-1 \pm i$.
 $1<|z|<z$.

UNIT-IV

7. a) Show that $\int_{-\infty}^{\infty} \frac{\cos a x}{x^{2}+1} d x=\pi e^{-a, a \mid=1}=1$.
7M 3 II
 $f(z)=2 z 4-2 z 3+2 z z^{2}+2 z+ \pm 1$, that lie inside the circle $\mid z 1=1$.

7M 3 III

8. Solve $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a \overline{2}\right)\left(x^{\bar{z}} \overline{+b} \overline{2}\right)} d x, a>0^{\prime 2} b>, a \neq b . \quad 14 \mathrm{M} \quad 3 \quad$ III

UNIT-V

9. a) Illustrate the imge of the infinite strip $0<{ }_{y<\frac{1}{2}}$ under the transformation $w=\frac{1}{z}$.
b) Find the bilinear transfor ${ }_{\text {mati }}$ on that maps the point $(0,1, \infty)$ in the z-plane onto the point $(-1,-2,-i)$ in the w-plane.

OR

 transformation $w=\operatorname{Sin} z$.
 $w_{1}=-1, w_{2}=-i, w_{3}=1$ respectively.
\square
Code: 4G346
II B.Tech. II Semester Supplementary Examinations March 2021

Pulse and Digital Circuits
 (Electrical and Electronics Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

Marks CO

1. a) Prove that for any periodic input wave form the average level of the steady state output signal from RC high pass circuit is always zero.
b) Derive the expression for percentage tilt (P) of a square wave output of RC high pass circuit.

OR

2. a) Analyze the high pass RC circuit for the following inputs, with the help of wave forms
i) Exponential input ii) Ramp input
b) Explain how a low pass RC network acts as attenuator and ringing circuit

8M CO1

UNIT-II

3. a) Explain the working of an Emitter coupled clipper with circuit diagram.

8M CO1
b) Write a short note on Diode switching times
$6 \mathrm{M} \mathrm{CO1}$

OR

4. a) Draw the diode comparator circuit and explain the operation of it when ramp input signal is applied.
b) Explain how a transistor can be used as a switch

UNIT-III

5. a) Explain the operation of Fixed-Bias Bistable multivibrator with circuit diagram and waveforms.

7M CO2
b) Design collector coupled monostable multivibrator for the following specifications. $\mathrm{VCC}=10 \mathrm{~V}, \mathrm{VBB}=-5 \mathrm{~V}, \mathrm{IC}($ sat $)=10 \mathrm{~mA}, \mathrm{hFE}=20, \mathrm{VBE}($ off $)=-0.5 \mathrm{~V}$, Output pulse width $\mathrm{tp}=200 \mathrm{~S}$. (assume Si transistors)

OR

6. a) Explain how an Schmitt trigger circuit acts as a comparator

$$
\begin{aligned}
& \text { b) Design the Astable Multivibrator to generate } 1 \mathrm{KHz} \text { square wave. The supply } \\
& \text { voltage } \mathrm{VCC}=10 \mathrm{~V}, \mathrm{IC}(\mathrm{sat})=10 \mathrm{~mA} \text { hfe }=50 \text { and assume Si transistors. }
\end{aligned}
$$

UNIT-IV

7. a) Explain briefly the different methods of generating time-base waveform
b) With the circuit diagram explain current time base generator. 8M

OR

8. a) Explain about the linearly correction through adjusting of driving waveform.
b) Explain how UJT is used for sweep circuit?

UNIT-V

9. a) Explain the basic operation of sampling gate.

8M CO4
b) Explain the operation of unidirectional diode gate.
$6 \mathrm{M} \mathrm{CO4}$

OR

10. a) Draw and explain the circuit diagram of integrated positive DTL NAND gate. 7M co4
b) Compare the RTL and DTL logic families in terms of Fan out, propagation delay, power dissipated per gate and noise immunity.
