
Hall Ticket Number: R-14 Code: 4G242 II B.Tech. II Semester Supplementary Examinations May 2017 **Electrical Circuits-II** (Electrical & Electronics Engineering) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) **UNIT-I** a) Convert into Delta connection equivalent. 4M b) A balanced star connected load of (4 + 200) per phase is connected to 400V supply. Calculate line currents, line voltages, Phase currents, phase voltages using RYB 10M sequence. Also find total power in the load? a) Prove that $\frac{1}{12} = \sqrt{3}$ delta connected system. 4M Prove that using 2 watt meters we can find the total power in the 3phase load. 10M UNIT-II State and prove Time integration property of Laplace transform. 3. a) 7M ne integration y(t) using Laplace transform. b) OR Find the Laplace transform of given periodic waveform. 7M b) $H(S) = \frac{10}{S(S^2+2S+9)}$. Find unit step response. UNIT-III Find v(t) of the given parallel RLC circuit using Laplace transform for t>0 5. TIF WE Switch K opened at t=0 7M b) Find i(t) of the given series RLC circuit for t >0

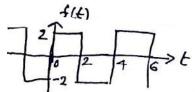
6. a) Switch 'k' is connected to 'a' until it reaches steady state and moved to 'b' at t=0. Find i(t) for t > 0

7M

b) Find $\frac{di}{dt} \left(O_{(Q_{+})} \right)$ when switch k is moved to 'b' at t=0.

7M

UNIT-IV


7. a) Explain all symmetry properties of wave form.

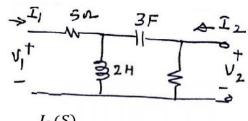
7M

b) Explain all 4 - 2 sing properties

OR

8. a) Find trigonometric Fourier series using symmetry properties

7M


Find F(w)

b)

UNIT-V

9. a) What are the properties of RC Network?

7M

Find $\frac{I_2(S)}{V_1(S)}$

7M

OR

10. a) What are the necessary conditions for driving point function?

7M

b) what $= \int_{\frac{z^4+2S}{S^2+1}}^{\frac{z^4+2S}{S^2+1}}$. Implernent using cauer form-1.

**

	Hall	Ticket Number :	
C	ode	R-14	
	ouc.	II B.Tech. II Semester Supplementary Examinations May 2017 Electrical Machines-II	
		(Electrical and Electronics Engineering)	
	_	x. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************	
		UNIT-I	
1.	a)	Discuss the constructional details of a 1- Transformer.	7M
	b)	Explain the principle of operation of a transformer. Derive its EMF equation.	7M
		OR	
2.	a)	Explain the different types of transformers.	7M
	b)	A single phase transformer has 180 turns respectively in its Secondary and primary windings. The respective resistances are 0.233 and 0.067. Calculate the equivalent resistance of i) the primary in terms of the secondary winding ii) the secondary in terms of the primary winding iii) the total resistance of the transformer in terms of the primary UNIT-II	7M
3.		Develop the equivalent circuit of a single phase transformer referred to primary and secondary	14M
		OR	
4.	a)	Explain the OC & SC tests on 1- Transformer.	7M
	b)	The parameters of approximate equivalent circuit of a 4KVA,200/400V,50Hz single phase transformer are R'p=0.15; X'p=0.37; Ro=600; Xm=300 when a rated voltage of 200V ia applied to the primary, a current of 10A at lagging power factor of 0.8 flows in the secondary winding. Identify	
		(i)The current in the primary, Ip (ii)The terminal voltage at the secondary side	7M
		UNIT-III	/ IVI
5.		Describe the various three phase transformer connection and parallel operation of three phase transformer.	14M
		OR	1-1111
6.	a)	Write short notes on three winding transformer.	7M
0.	b)	With the help of connection and vector diagrams how a 2- supply can be obtained from 3- supply.	7M
		UNIT-IV	
7.	a)	Explain the principle of operation of three-phase induction motor.	7M
	b)	Prove that rotor copper loss is slip times air gap power.	7M
	,	OR	
8.	a)	The r.m.s. current in the rotor bars of an induction motor running with a slip of 1% is 25 A, and the torque produced is 20 N m. Estimate the rotor current and torque when the load is increased so that the motor slip is 3%.	7M
	b)	As the slip of an induction motor increase, the current in the rotor increases, but beyond a certain slip the torque begins to fall. Why is this Explain?	7M
C		Describe the starting methods of three phase industion meter	1 1 1 1
9.		Describe the starting methods of three phase induction motor. OR	14M
10		-	
10.		The test data on a 208 V, 60 Hz, 4 pole, star connected three-phase induction motor rated at 1710 rpm are as follows: the stator resistance between any two terminals = 2.4 Q. No load test: 450 W, 1.562 A, 208 V. Blocked rotor test: 59.4 W, 2.77 A, 27 V. Friction and windage loss = 18 W. Using circle diagram determine the stator current, power factor and efficiency at 75% full load.	14M

Holl ⁻	Ticke	et Number :												
													R-14	
Code				- C	ا در در						L:	- A 4		
	II E	3.Tech. II Se	emeste Ger					•			iion:	s May	/ 201/	
			(Electric		_	_			_	_	g)			
		rks: 70		•				r			.,	, - 1	Time: 3 Ho	
Answ	er a	ll five units b	by choo	sing		que ****		n tro	m e	ach i	JNIt	(5 x 1	4 = /0 Mark	is)
							UNI	T–I						
1.	a)	Explain abo	ut the gro	wth	of po	wer	syste	ems i	n Ind	ia?				7M
	b)	What is the					tic p	recip	itatoı	r use	d in	the ch	nimney of a	
		thermal pow	er statior	1? Ex	cplair	۱.	OF	,						7M
2.		Draw the lin	e diagrar	n of a	a the	rmal			ation	show	ina v	arious	narts	14M
۷.		Diaw the iii	o diagrai	11 01 0	<i>a</i> (110)		UNI			SHOW	iiig v	anous	parto	I T IVI
3.	a)	Explain the	working o	of a g	as p	ower			่ า a s∈	chem	atic (diagrar	n	7M
	b)	With neat sk	_	_								_		7M
							OF	₹						
4.		Draw a nea			_		of a	Hydr	o Ele	ectric	Plar	nt and	explain the	
		functions of	various o	omp	onen				٦					14M
5.	2)	What are me	orite and	dom	orito		UNIT		wor E	Dlante	. 2			7M
5.	a) b)	Explain the v										chema	tic diagram	7 IVI 7M
	υ,		romang p		.0 0.	u	OF	-). p.a.			0	alagrann	7 101
6.		What are the	e factors	to be	con	sider	ed fo	or the	the selection of site of a nuclear					
		power statio	n?						_					14M
_					_		UNI							
7.	a)	A Power sta capacity fac								•		actor o	f 60%, plant	
		i) Reserve		o an	а ріа	iii us	ic rac	olor o	112)	70. T II	IG			
		ii) Maximur	n energy	that	could	d be	produ	uced	daily	if the	e plai	nt while	e running as	
		per sche		•										7M
	b)	Explain diffe	erent type	s of	oowe	r tac	tor ta O F							7M
8.	a)	List out the	types of	tariff	HSE	d in 1			Distin	nauisk	n hv	suitahl	e examples	
O.	u,	between	typoo oi	tariii	uoo	I	praot	100. 1	J10(iii	iguioi	· Dy	ounabi	o oxampioo	
		` '	vo-part ta											
		(ii) N	laximum	dem	and t	ariff.								14M
0		Evaloia diffo	rant tuna	o of l	Non	Con	UNI				fone	2 K GO 1 ()		4 4 1 4
9.		Explain diffe	тепі іуре	SOL	NOI1-	Con	venu O F		Sour	ces o	n ene	ergy ?		14M
10.		Explain abo	ut:				J 1	•						
-		•	distillation	on.										
		b) Solaı	cooling.											

c) Solar drying.

	Hall	Ticket Number :													_
L	Code	a: AC244		<u> </u>									_	R-14	
	Il B.Tech. II Semester Supplementary Examinations May 2017 Linear Control Systems														
	(Electrical and Electronics Engineering) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************														
	UNIT-I														
1.	a)	Define Signal flow State the advanta	_	•	•								reducti	on techniques?	7M
	b)	Draw the signal fl $x_2 + 5x_3 - 2x_1 = 0$	_	graph	for t	he fo	llowi	ng e	quati	ons					
		$x_3 + 2x_4 - 4x_2 = 0$													
		$x_4 - 8x_3 = 0$													7M
								OR							
2.		Define control sy system with exar	nple										•	•	4.48.4
		loop control syste	em.				IINIIT		1						14M
3.	a)	What is the outp input function?	ut re	espor	nse d		UNIT cond		er co	ntrol	syst	em :	subjec	ted to unit step	7M
	b)	Obtain the rise ti unit step respons		•					•			ot ar	nd sett	ling time of the	
						C($\frac{(s)}{(s)} = \frac{1}{s}$		36						
						R((s)	$S^2 + 1$	2S + 1	36					7M
								OR							
4.	a)	A feedback contr	ol sy	/sten	n is r	epre	sente	ed by	/ the	clos	ed lo	op t	ransfe	r function given	
		by the $\frac{C(s)}{R(s)} = \frac{1}{S^2}$	+0.6	S + 9	.Fine	d Kp,	K _v , I	K _a , F	or th	ie sy	stem	and	the st	eady state error	
		for $r(t)=1+t+(t^2)/2$.													7M
	b)	Define Type of the efficient for stand		-		als.			on,	veloc	ity a	nd a	accele	ration error co-	7M
_	۵)	Write the limitation	, no c	t D I	J oria		JNIT		Douth	orit	orion	invo	otiant	the stability of	
5.	a)	Write the limitation												-sT	7M
	b)	The open loop	trar	nsfer	fun	ction	of	a f	eedb	ack	cont	rol	systen	n is given by	
		$G(s)H(s) = \frac{1}{s(s+1)}$	$\frac{R}{4)(s}$	$\frac{X}{x^2+2}$	s+2	C	eter	mine	the	stab	ility (of th	e syst	em when K=12	
		and find the range	e of l	K for	stab	ility.									7M

OR

6. a) Draw the root locus for the unity feedback system whose open loop transfer function is $G(s) = \frac{k(s+1)}{(s-1)(s+2)(s+4)}$. Find the range of k for which the system is stable.

Code: 4G244

UNIT-IV

7. a) Sketch the Bode plot for the open-loop transfer function for the unity feedback system given below and assess stability $G(s)H(s) = \frac{50}{(s+1)(s+2)}$.

7M

b) Define minimum, non-minimum and all pass transfer function. Explain the effect of transportation lag in Bode plot.

.

7M

OR

8. a) Sketch the polar plot for the system with open loop transfer function $G(s)H(s) = \frac{1}{(s+2)(s+4)} \, .$

7M

b) Define PM, GM, PCF and GCF showing in graph. How are these parameters related to stability?

7M

UNIT-V

9. a) The open-loop transfer function of a unity feedback control system is given by $G(s)H(s) = \frac{K}{s(1+0.2s)}.$ Design a suitable compensator such that the system will have K_v and PM = 50°.

14M

OR

10. a) Define transfer function. Find the transfer function of MIMO system is $G(s) = C(sI - A)^{-1}B + D$.

7M

b) Find the resolvent matrix of $A = \begin{bmatrix} 1 & 4 \\ -2 & -5 \end{bmatrix}$.

		Mathematics-III	
		(Common to EEE & ECE) Time: 3 Howards: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************	urs
		UNIT-I	
1.	a)	Show that $S(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$	7M
	b)	If $\tan(x+iy) = A+iB$, show that $A^2 + B^2 + 2A \cot 2x = 1$	7M
		OR	
2.	a)	Given that $\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)} dx = \frac{f}{\sin nf}$ Show that	7M
		$\Gamma(n)\Gamma(1-n) = \frac{f}{\sin nf}$ for $0 < n < 1$ and hence find $\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})$	
	b)	Find the real and imaginary parts of $\ln \cos(x+iy)$.	7M
3.	a)	UNIT-II State and prove Cauchy-Reimann equations in Cartesian form.	7M
	b)	If $v(r, y) = \left(r - \frac{1}{r}\right) \sin y$, $r \neq 0$, then find an analytic function $f(z) = u + iv$.	71.4
		OR	7M
4.		Determine an analytic function $f(z) = u + iv$, if $u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)}$ and	d
		$f\left(\frac{f}{2}\right) = 0.$	
		UNIT-III	14M
5.	a)	Evaluate $\int \frac{\cos f z}{z^2 - 1} dz$, using Cauchy's integral formula around a rectangle with	h
		vertices $2 \pm i$, $-2 \pm i$.	7M
	b)	Expand $f(z) = \frac{(z-1)}{(z+1)}$ in Taylor's series about the point $z = 1$.	7M
		OR	
6.	a)	Evaluate $\int_{c} z ^2 dz$ around the square with vertices at (0,0), (1,0), (1,1) (0,1)	8M
	b)	Expand $f(z) = \frac{z}{(z-1)(z-3)}$ for $ z-1 < 2$.	6M
		Радо 1	of 2

II B.Tech. II Semester Supplementary Examinations May 2017

Hall Ticket Number:

Code: 4GC41

R-14

Code: 4GC41

a) Using Cauchy's residue theorem, evaluate $\int_{c} \frac{e^{2z}}{(z+1)^4} dz$, where c is the circle |z|=2

7M

b) Use Rouche's theorem to solve $p(z) = z^4 - 5z + 1$, annulus region 1 < |z| < 2.

7M

a) Evaluate $\int \frac{(z-3)}{z^2+2z+5} dz$, where c is the circle |z+(1+i)|=2.

7M

b) Evaluate $\int_{c} \frac{f'(z)}{f(z)} dz$ where $f(z) = \frac{(z^2 + 1)^2}{(z^2 + 2z + 2)^3}$, c: |z| = 4

7M

UNIT-V

Show that the straight lines parallel to the co-ordinate axes in the z-plane maps onto 9. parabolas in the w-plane under the transformation $w = z^2$. Indicate the region with sketches.

7M

Find the bilinear transformation which maps z = 1, i, -1 into $w = 0, 1, \infty$ Also find the fixed points of the transformation.

7M

a) Show that the transformation $w = \frac{i(1-z)}{(1+z)}$ maps the circle |z| = 1 into the real axis of

the w-plane and the interior of the circle |z| < 1 into the upper half of the w-plane.

7M

b) Find the bilinear transformation which maps the points z = -1, i, 1 into w = 1, i, -1. Also find its invariant points.

Ha	all Ti	cket Number :											
Со	de:	4G346											
		II B.Tech. II Semester Supplementary Examinations May 2017											
		Pulse and Digital Circuits											
Ν	lax.	(Electrical & Electronics Engineering) Marks: 70 Time: 3 Hours											
, ,		in the street is a second street in the street is a second street in the street in the street is a second street in the street in the street is a second street in the street in the street in the street is a second street in the street in t											

1. a) Explain the response of high pass RC circuit with the help of waveforms.													
	,	i) Pulse input ii) Ramp input	7M										
	b)	, , , , , , , , , , , , , , , , , , ,											
	OR												
2.	a)	Analyze the low pass RC circuit for the following inputs, with the help of wave forms											
		i) Square input ii) Step input	7M										
	b)	Explain how an RC low pass circuit acts as an integrator	7M										
		UNIT-II											
3.	a)	With the help of neat circuit explain the working of negative clamping circuit. What is the effect of Rs $\&$ R _f is clamping circuit output.	7M										
	b)	The input voltage of the two level clipper is varying linearly from 0 to 100 V. Draw the											
		output waveform and transfer characteristics.											
		100K R ₂ 1											
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
		ĭ ⁱ l i ^o											
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7M										
		OR											
4.	a)	Write a short note on how transistor acts as a switch.	7M										
	b)	Explain the need for clamping circuits	7M										
		UNIT-III											
5.		Find Lower and Upper Threshold voltage for Schmitt trigger circuits with following											
		data. Assume transistors with hfe=30, V_{CC} =12V, R_{C1} =4K, R_{C2} =1K, R_1 =2K, R_2 =6K, R_2	14M										
		OR											
6.		What is a Monostable Multivibrator. Explain with the help of neat circuit diagram, the											
		principle of operation of mono stable multivibrator and derive an expression for pulse	4 4 5 4										
		width. Draw the waveforms at collector and bases of both transistors. UNIT-IV	14M										
7.	a)	Explain the basic principles of miller and Bootstrap time base generator.	7M										
	b)	Write the general features of a time base signal.	7M										
	,	OR											
8.	a)	Discuss about the simple current sweep circuit.	7M										
	b)	Explain about the linearly correction through adjusting of driving waveform.	7M										
_		UNIT-V											
9.	a)	What is sampling Gate? And explain the basic operating principle of gates?	7M										
	b) Explain the operation of unidirectional diode gate 7M												
10.	a)	OR What are the different logic systems? Explain them?	7M										
	b)	Prove that NAND and NOR gates are universal gates.	7M										
	,	***											