Hall	Tick	et Number :												
Code:	4 G 2	R-14												
		B.Tech. II Semester Supplementary Examinations May 2018												
		Linear Control Systems												
Max	Ma	(Electrical and Electronics Engineering) tks: 70 Time: 3 Hou	irc											
		er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	112											
		****** UNIT–I												
1.	a)	What is the classification of control systems and discuss the importance of												
		mathematical modeling of a control system	7M											
	b)	Explain the necessity and effect of feedback in control system?												
0	-)	OR												
2	a) b)	Write the block diagram reduction rules with suitable examples.	7M 7M											
	b)	Derive an expression for the transfer function of an AC servo motor.	7M											
3.	a)	A unity feedback system has $1 \text{ unity feedback system has}$												
	,	$G(s) = \frac{1}{S(s+1)(s+4)} [$												
		System (ii) All error coefficients.(iii) Error for ramp input with magnitude												
	b)	How damping ratio affects the time response of second order system?	4M											
		OR												
4.	a)	The open loop transfer function of unity feedback system is												
		$G(s) = \overline{s(s+1)}$ Determine the nature of the closed loop system. Also determine the rise time,												
		peak time and peak overshoot.	7M											
	b)	Derive the expression for settling time?	7M											
5.	a)	UNIT–III What are the limitations of Routh's criteria. Illustrate with an example.	4M											
	b)	For the syste limitations of Routh's criteria. Illustrayewith an ex												
		em whose characteristic equation is g $F(s) = s(s+5)(s+6)(s2+4s+25) + \frac{n}{K(s+3)} = 0$												
		Determine the values of K which will cause sustained oscillations in the closed	10M											
		loop using Routh Criteria. OR	TON											
6.	a)	Explain the construction rules for root locus technique.	7M											
	b)	Test the stability of the system with the following characteristic equation by												
		Routh's test s ⁶ +2s ⁵ +8s ⁴ +20s ² +16s+16=0	7M											
7.	a)	UNIT-IV Derive the correlation between time domain and frequency domain specifications.	4M											
7.	b)	Sketch the Bode plot and been time d the Gain Margin and Phase Margin for the												
	-,	determine 10												
		transfer function given by $G(s) = \overline{s(1+0.4s)(1+0.1s)}$	10M											
0	-)	OR	41.4											
8.	a) b)	List the advantages and disadvantages of Frequency response methods. Sketch the polar plot ard disadvantage stability of the system represented by	4M											
	b)	Sketch the polar plot and disadvantage stability of the system represented by ind discuss the K												
		$G(s)H(s) = \overline{s(s+1)(s+5)}$	10M											
9.	a)	Derive the expression for the transfer function of a lag-lead compensator.	7M											
	b)	Explain the design procedure of lag compensator.	7M											
10	\sim	OR List the properties of State Transition Matrix	714											
10.	a) b)	List the properties of State Transition Matrix. Explain the controllability and observability with an example	7M 7M											
	5)		7 171											

Hall 7	Ficke	et Number :												[
Code:	4G2	42		1				1		J	1		J	R-14	
Couc.		B.Tech. II S	em	este	r Su	pple	eme	enta	ry E>	am	inat	ions	Ma	y 2018	
						• •		Circ	•					,	
			(Ele	ctric	al a	ind E	lect	roni	cs Er	ngine	eerir	ng)			
Max. Ar			s by a	choc	osing		que ****		fron	n ead	ch ui	nit (t	5 x 14	Time: 3 Ho = 70 Marks)	Urs
								UNI	T–I						
1.	a)	Distinguish with current						n Sta	ar an	d De	elta c	onne	ected	3-ph systems	7M
	b)	A balanced voltage is 23							•			•	,	ph and supply	7M
								OF	R						
2.	a)	Explain the relevant cor	•										•	e and deduce	7M
	b)						•		•		•	•		balanced Y-	
		connected I			•	•			(8.6)	6+j5)	ii	n ead	ch ph	ase. Find the	7M
		currents and	u u a	VV LIIC	e vec		llayia	UNI	F_II	7					7 111
3.	a)	State and P	rove	Initia	al and	d Fin	al Va			rems	5.				7M
	b)											. De	termi	ne its Laplace	
	,	transform.					U	,	,	,				•	7M
								OF	R						
4.		S-domain ir	nped	lance	e and	d cur	rent.	Ass	ume	initia	al cor	nditio	n of	network. Find the voltage in and s-domain	
		circuits.								_					14M
5.	2)	Stata tha in	itial	oond	ition		L				00.0	nnliv	ad for	r the transient	
5.	a)	analysis of a						ii sig	JUILC	ance	as a	appire		r the transient	7M
	b)	0. If R = 1	ar	nd L		•	•			•			•	itching it at t = ng differential	
		equation ap	proa	cn.				~							7M
C					:4 ~		ما م	OF			0		4400		
6.		the capacito					ne ze	•	itial c					voltage across uit elements.	14M
7.		Explain Eve	n. O	dd ai	nd Ha	alf w				bv u	sina	relev	ant e	xamples.	14M
		I	,					Ó	•	,	0			·	
8.		Find the For	urier	serie	es of	saw	tooth	n wav UNIT		m.					14M
9.		Realise the	netw	ork v	whos	e im	peda	nce i	s giv	en b	y Z 1	(s) :	= <u>s</u>	$+10s^2+7$ s2+2s	14M
10.		What are po	ositiv	e rea	ıl fun	ction	s? D **			e pro	perti	es of	these	e functions.	14M

Hall	Tick	et Number :	
Code	e: 40	G241 R-14	
	II	B.Tech. II Semester Supplementary Examinations May 2018	
		Electrical Machines-II	
May	M	(Electrical & Electronics Engineering) Time: 3 Ho	urc
-		all five units by choosing one question from each unit (5 x 14 = 70 Mark	

1.	a)	UNIT–I Discuss the constructional features of transformers. Draw neat diagrams	10M
	b)	The number of turns on the primary and secondary windings of a single	10101
	,	phase transformer are 350 and 35 respectively. If the primary is connected to	
		a 2.2 kV 50 HZ supply. Determine the secondary voltage	4M
0		OR	
2.	a)	Explain the principle of operation of a single-phase transformer when it supplies lagging power factor load. Draw the phasor diagram under this condition	8M
	b)	The maximum flux density in the core of 250/3000 Volts 50 HZ single phase	
		transformer is 1.2 webers per square meter. If the emf per turn is 8 volts,	014
		determine primary and secondary turns and area of the core	6M
		UNIT–II	
3.	a)		
		OC and SC tests on a single phase transformer	7M
	b)		
		10000 V to 440 V. If the output capacity of the transformer is 132 kVA, find the secondary and primary currents of the transformer	7M
		OR	
4.	a)	Define all day efficiency? Also derive the condition for maximum efficiency of	
		a transformer	6M
	b)	In Sumpner's test on two identical transformer rated 500 KVA, 11/0.4 KV, 50 Hz, the wattmeter reading on HV side is 6 KW on rated voltage and on LV	
		side is 15 KW when circulated full load current. Find the efficiency of each	
		transformer on 3/4th load and 0.8 pf lagging. What will be the maximum	
		efficiency of each transformer?	8M
		UNIT–III	
5.		Compare the different connections of 3-phase transformers	14M
		OR	
6.	a)	Why should the tap changer be connected near the neutral? What about delta	
	۲	connected transformer?	7M
	b)	With neat phasor diagram, explain the voltage regulation of 3-phase transformer	7M

UNIT-IV

7. a) Explain the following terms:

(i) Maximum torque. (ii) Full load torque and (iii) Starting torque. 6M

b) A 12-pole, 3-phase, 50 HZ, IM draws 280 Amp and 110 KW under the blocked rotor test. Find the starting torque when switched on direct rated voltage and frequency supply. Assume the stator and rotor copper losses to be equal under the blocked rotor test 8M

OR

- 8. a) What are the various losses in an induction motor and on what factors they depend? 7M
 - b) A 3-phase induction motor runs at 1440 rpm at full load when supplied power from 50 Hz, 3-phase line. Calculate:

(i) The number of poles. (ii) Slip of full load.

(iii) Speed of the rotor field w.r.t rotor. (iv) Speed of the rotor field w.r.t stator. 7M

UNIT-V

- 9. a) With neat diagram explain the operation of 3-phase IM as induction generator 7M
 - b) Two 50 Hz, 3induction motor having 6 and 4-poles respectively are cumulatively cascaded. The 6-pole motor being connected to the main supply. Determine frequencies of rotor currents and the slips referred to each stator field. If the set has slip of 2%. 7M

7M

7M

OR

- 10. a) Explain in detail about the working of rotor rheostat starter with a suitable diagram.
 - b) The rotor of 3-phase slip ring induction motor has an induced voltage of 120 V and impedance of 0.23 + j14 ohm at stand still. The induction motor has full load slip of 0.04 driving constant torque load and running at 1340 rpm. Calculate the voltage to be injected if the motor is to be driven at 1000 rpm.

Hall	Tick	et Number :														_
Code	: 4G	C41												R-	14	
oouc		B.Tech. II Se	eme	este	r Su	pple	eme	ntai	γE	xam	nina	tion	s May	2018		
						• •	em						,			
		d		((Com	nmor	n to E	EEE c	and	ECE)		-	r:		_
		rks: 70 Ill five units b	oy ch	1005	sing		que:		fror	n ec	hoch	unit		Time: 3 = 70 N		
1.					-		når når	UNI	Γ—Ι							
1.	a)	Evaluate ∫₀¹ (6M
	b)	Separate rate	(log -1 (3	ŧ)"- ε + 4;	' <i>ay,</i> vy ini		al and	d ima	gina	ry pa	arts.					8M
2.	2)	/		+ i;	v) ir	01	and	OR Rini E								
۷.	a)	Prove that \int_{0}^{1}														7M
	b)	$\int_{tan(\theta + i\varphi)}^{tove that \int_{0}^{t}}$	$\int_{0}^{1} \frac{x^{2}}{\sqrt{1-2}} = \epsilon$	$\frac{1}{2} dx$	x sho ^W	r that	$\frac{\partial}{\partial \theta} =$	$=\frac{n}{4\sqrt{2}}$ $(n+)$	$\frac{1}{2}$ $\frac{\pi}{2}$	and 4	$p = \frac{1}{2}$	{ <i>tog</i>	$tan\left(\frac{\pi}{4}\right)$	$\left(\frac{\alpha}{2}\right)$		7M
					714	that	$\theta =$	UNIT	- 11							
3.	a)		ne fu	nctic	n			UNI	not a	naly	tic at	the	origin e	ven tho	ugh	
	b)	CR equation														7M
	b)	Find the ana	lytic	func	tion	whos	e rea			sir cosh2y	$\frac{12x}{-cos2}$	x				7M
4.	a)	Find the ana	lvtic	func	tion	whos	е гез	OR	tis ;		n <u>x</u> 7 cozs	Tar	4			7M
	b)	Show that $\frac{1}{2}$	ic Iyt <u>1</u>	func	ion	(Z)	harr	nonio).	<i>v</i> =	(x —	- 3 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	~~ + ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· + y2)		7M
		u	= 2 l	0g(x	5 - h g	י נ~ע		UNIT								7 101
5.	a)	Evaluate ∫ _o s,₊	2 (2)2	g(x)	= + :	the	line	nonT UNI <u>x</u> y = 2	- I							7M
	b)	ite J _c						evalu	ate	đ. sin	<i>π</i> ₂ ² ⊥/	0.0772		'n	ρ	
		Using Cauch circle $ z = 3$, .		9. 0.1					J _C (z-1)(2	z-2)	dz, wh	er C is	th	7M
_							2	OR					100			
6.	a)	Find the Tay	lor's	expa	ansic	on of	f(z)	$=\overline{\left(\frac{z}{z+z}\right)}$	$\frac{1}{1}$ $\frac{1}{2}$ a	ьʔut	the p	oint	z = -i			7M
	b)	Find the Laure	ents s	serie	s exp	ansic	n of -	$(z+z^2-z-1)(z-1)(z-z)$	$(1)^2$ (6z-1) (-3)(z+1)	in	the r	egior	$13 < _{z}^{i}$, 2 < 5		7M
								UNIT	–IV							
7.	a)	Find the resid	dues	of	(z) =	$= \overline{(z-z)}$	$\frac{z^3}{1)4(z-1)}$	1)(z-3	$\frac{-\mathbf{r}}{5}$ at	its po	oles.					7M
	b)	By integratin														7M
		,	5				,	OR		0 -	-4cos0	40				7 101
8.	a)	State and pro		-		-	-									7M
	b)	Determine the	e pol	es o	fthe	funct	ion 🗧	(z) =	$\overline{(z-1)}$	$\frac{z^2}{(z+2)^2(z+2)}$	anc	the	residue a	at each p	ole.	7M
								UNIT	-V							
9.		Find the biline														7M
	b)	Discuss the and $y = cons$											lines x	= cons	tant	7M
								OR								, 191
10.	a)									ce						7M
	b)	Find the biline	ear tra	ansfo	rmati	on w			the p	oints	*	c' 1. ~	onto "	_ 1, -,.	-1	7M
							**:	ጥ								

Hall T	icke	et Number :										D 14	
Code:	4 G3	346										R-14	
	II	B.Tech. II S		JIse	and D	igita		cuit	S		May 2	2018	
Max. I Answe			-		one qu		-		-	-		Time: 3 Hou = 70 Marks	-
						UNIT	-1						
1.	a)	Derive the expression for the output of a high-pass circuit excited by exponential input and ramp for different time constants.										8	
	b)	A 20 Hz symmetrical square wave whose peak to peak amplitude is 1V is impressed upon a high –pass RC circuit whose lower 3-dB frequency is 10Hz. Calculate and sketch the output waveform for the first two cycles. What is the peak-to-peak output amplitude under steady-state conditions?											6
		pour to pou	ar output	ampi		OF	-	otato	00110				0
2.	a) b)	ii. P iii. A iv. C v. L	ransmiss Percentag Attenuator Over com inear wa ntegrator	ie tilt r. pensa ve sha	tion aping	ak valu	ie is [,]	1V e>	ktends	s ± 0	9.5V wit	h respect to	6
		ground. The section is 0. whose time values of the equals that a significance	2 sec. if t constant e output under neg	his wa is 0.2 wavef gative	ive form s, what orm? P	n impre are the rove th	essed e stea nat th outp	upoi ady-s e are	n an F tate n ea unc	RC d naxi der t	ifferenti mum ar he posi	iating circuit nd minimum itive section	8
3.	a)	Give the cire with the help			•••	of shu	nt cli	pper	s and	exp	lain the	ir operation	6
	b)	State and pr would exped	rove clarr	iping o	circuit th	neorem	n. Ske		he ou	Itput	wavefo	orm that you	
			^v i 20	V	Γ		+ •	16	+ R	-	♪₽	× +	

20 ms -

(-)

-20 V

8M

10 V

4. a) Explain transfer characteristics of emitter coupled clipper and derive necessary equations.

6M

8M

8M

6M

6M

b) Draw the transfer characteristics for the clipper circuit shown. Assume ideal Diodes.

UNIT-III

- 5. a) Explain and Derive the expression for frequency of oscillation of an Astable multi vibrator.
 - b) Design a collector coupled Astable multivibrator using NPN silicon transistors with h_{fe}=40, r_{bb}=200 supplied with V_{cc}=10V and circuit component values are R_c=1.2K and C=270 pF.

OR

- 6. a) Explain the operation of a Monostable multivibrator and derive for the pulse width with necessary waveforms & circuits.
 - b) Design a symmetric collector-coupled astable multivibrator to generate a square wave of 10 kHz having peak-to-peak amplitude of 10 V where, $h_{FE} min = 30$, $V_{CE}(sat) = 0.2$ V, $I_C(sat) = 2$ mA 8M

UNIT–IV

Define and derive the terms slope error, displacement error and transmission error. 7. a) 8M b) In the transistor bootstrap circuit, $V_{CC}=25V$, $V_{BE}=-15V$, R=10k, $R_{E}=15K$, $R_B = 150K$, $C = 0.05 \mu$ F, and $C_1 = 100 \mu$ F. the gating waveform has a duration Tg =300 μ S. The transistor parameters are h_{fe} = 1.1 K , h_{re} =2.5X10⁻⁴ k h_{fe} = 50, $h_{oe} = 1/40 \text{ k}$ a) Draw the waveforms of I_{C1} and V_{O} b) What is the slope error of the sweep c) What is the retrace time for C discharge completely. 6M OR a) How is deviation of linearity expressed? What do you mean by sweep time and 8. restoration time? 6M b) How a compensation circuit improves the linearity of a Bootstrap voltage time 8M base generator? Discuss. UNIT-V Draw and explain with relevant waveforms the process of frequency division by 9. a) an Astable multivibrator. 8M Explain about phase delay and phase jitters. 6M b) OR a) Explain the synchronization of a sweep circuit with symmetrical signals. 6M 10.

 b) Explain about unidirectional diode sampling gate. Write its advantages and disadvantages.
8M