II B.Tech. II Semester Supplementary Examinations May 2018

Linear Control Systems
 (Electrical and Electronics Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) What is the classification of control systems and discuss the importance of mathematical modeling of a control system
b) Explain the necessity and effect of feedback in control system?

OR

2 a) Write the block diagram reduction rules with suitable examples.
b) Derive an expression for the transfer function of an AC servo motor.
 System (ii) All error coefficients.(iii) Error for ramp input with magnitude 4
b) How damping ratio affects the time response of second order system?

OR

4. a) The open loop transfer function of unity feedback system is $\begin{aligned} & \text { 3ystem? } \\ & G(s)=\frac{4}{s(s+1)}\end{aligned}$ Determine the nature of the closed loop system. Also determine the rise time, peak time and peak overshoot.

7M
b) Derive the expression for settling time?

UNIT-III
5. a) What are the limitations of Routh's criteria. Illustrate with an example.
b) For the syste limitations of Rcuth's criteria. Illustreivewith an e,
$\begin{aligned} & \ni m \text { whose characteristicequation is } \mathrm{g} \\ & F(s)=s(s+5)(s+6)(s 2+4 s+25)\end{aligned} \mathrm{n}_{K(s+3)}=0$
Determine the values of K which will cause sustained oscillations in the closed loop using Routh Criteria.

OR
6. a) Explain the construction rules for root locus technique.
b) Test the stability of the system with the following characteristic equation by Routh's test $s^{6}+2 s^{5}+8 s^{4}+20 s^{2}+16 s+16=0$
7. a) Derive the correlation between time domain and frequency domain specifications.
b) Sketch the Bode plot and ben time ${ }^{\mathbf{d}}$ the Gain Margin and Phase Margin for the transfer function given by determine $\frac{10}{G(s)=s(1+0.4 s)(1+0.1 s)}$

OR
8. a) List the advantages and disadvantages of Frequency response methods.
b) Sketch the polar plot ard disadvantage $\begin{aligned} & \text { id discuss the } \\ & \text { stability of the syst }\end{aligned}$ id discuss the $\frac{K}{s(s+1)(s+5)}$
$G(s) H(s)=\frac{K}{s(s)}$

UNIT-V
9. a) Derive the expression for the transfer function of a lag-lead compensator.
b) Explain the design procedure of lag compensator.

OR

10. a) List the properties of State Transition Matrix.
b) Explain the controllability and observability with an example
\square

II B.Tech. II Semester Supplementary Examinations May 2018

Electrical Circuits-II

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Distinguish the differences between Star and Delta connected 3-ph systems with current and voltage relations
b) A balanced Star connected load has an impedance of (3+J4) /ph and supply voltage is $230 \mathrm{~V} ; 3$ ph supply. Find active and reactive powers.

OR
2. a) Explain the importance of Star-Delta Transformation technique and deduce relevant conversion procedure from Star to Delta of 3-ph circuit.
b) A Three Phase 4 wire, $100 \mathrm{~V}(\mathrm{~L}-\mathrm{L})$ system is supplied to a balanced Y -
connected load having impedances of $(8.66+j 5)$ in each phase. Find the
currents and draw the vector diagram.

UNIT-II

3. a) State and Prove Initial and Final Value Theorems.

OR

4. A time dependent voltage $\mathrm{V}(\mathrm{t})$ is applied to a series R-L-C network. Find S-domain impedance and current. Assume initial condition of the voltage in inductor to be assisting the input current, draw the t-domain and s-domain circuits.

UNIT-III

5. a) State the initial conditions and their significance as applied for the transient analysis of an electrical circuit.
b) A series R-L circuit is energized by a d.c.voltage of 1.0 V by switching it at $t=$ 0 . If $R=1$ and $L=1 H$, find the expression for current using differential equation approach.
6. To a series L-C circuit, a 50 V d.c. is applied at $\mathrm{t}=0$. Find the voltage across the capacitor at $t=\infty \alpha$. Assume zero initial condition in the circuit elements. 14M

UNIT-IV

7. Explain Even, Odd and Half wave symmetry by using relevant examples.

OR

8. Find the Fourier series of saw tooth wave form.
9.

Realise the network whose impedance is given by $Z_{1}(S)=s^{n} \frac{ \pm 10 s^{2}+7}{s^{2}} \frac{2 s}{2 s}$

OR

10. What are positive real functions? Discuss the properties of these functions. 14M
\square
Hall Ticket Number :

Code: 4G241

I| B.Tech. II Semester Supplementary Examinations May 2018 Electrical Machines-II

(Electrical \& Electronics Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Discuss the constructional features of transformers. Draw neat diagrams
b) The number of turns on the primary and secondary windings of a single phase transformer are 350 and 35 respectively. If the primary is connected to a 2.2 kV 50 HZ supply. Determine the secondary voltage

OR

2. a) Explain the principle of operation of a single-phase transformer when it supplies lagging power factor load. Draw the phasor diagram under this condition
b) The maximum flux density in the core of $250 / 3000$ Volts 50 HZ single phase transformer is 1.2 webers per square meter. If the emf per turn is 8 volts, determine primary and secondary turns and area of the core

UNIT-II

3. a) With all necessary instruments draw a neat experimental set up to conduct OC and SC tests on a single phase transformer
b) A three phase transformer is used to step down the supply voltage from 10000 V to 440 V . If the output capacity of the transformer is 132 kVA , find the secondary and primary currents of the transformer

OR

4. a) Define all day efficiency? Also derive the condition for maximum efficiency of a transformer
b) In Sumpner's test on two identical transformer rated $500 \mathrm{KVA}, 11 / 0.4 \mathrm{KV}, 50$ Hz , the wattmeter reading on HV side is 6 KW on rated voltage and on LV side is 15 KW when circulated full load current. Find the efficiency of each transformer on $3 / 4$ th load and 0.8 pf lagging. What will be the maximum efficiency of each transformer?

UNIT-III

5. Compare the different connections of 3-phase transformers

OR

6. a) Why should the tap changer be connected near the neutral? What about delta connected transformer?
b) With neat phasor diagram, explain the voltage regulation of 3-phase transformer

UNIT-IV

7. a) Explain the following terms:
(i) Maximum torque. (ii) Full load torque and (iii) Starting torque.

6M
b) A 12-pole, 3-phase, 50 HZ , IM draws 280 Amp and 110 KW under the blocked rotor test. Find the starting torque when switched on direct rated voltage and frequency supply. Assume the stator and rotor copper losses to be equal under the blocked rotor test

OR

8. a) What are the various losses in an induction motor and on what factors they depend?
b) A 3-phase induction motor runs at 1440 rpm at full load when supplied power from 50 Hz , 3-phase line. Calculate:
(i) The number of poles. (ii) Slip of full load.
(iii) Speed of the rotor field w.r.t rotor. (iv) Speed of the rotor field w.r.t stator.

UNIT-V

9. a) With neat diagram explain the operation of 3-phase IM as induction generator
b) Two $50 \mathrm{~Hz}, 3$ - induction motor having 6 and 4 -poles respectively are cumulatively cascaded. The 6-pole motor being connected to the main supply. Determine frequencies of rotor currents and the slips referred to each stator field. If the set has slip of 2%.

OR

10. a) Explain in detail about the working of rotor rheostat starter with a suitable diagram.
b) The rotor of 3-phase slip ring induction motor has an induced voltage of 120 V and impedance of $0.23+\mathrm{j} 14 \mathrm{ohm}$ at stand still. The induction motor has full load slip of 0.04 driving constant torque load and running at 1340 rpm . Calculate the voltage to be injected if the motor is to be driven at 1000 rpm .

I| B.Tech. II Semester Supplementary Examinations May 2018 Mathematics-III

(Common to EEE and ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Evaluate $\int_{0}^{-1}\left(\log \frac{1}{y}\right)^{n-1} d y,(n>0)$.

 7M

2. a) Show that the function what ondic at the origin even though CR equations are satisfied thereof.
b) Find the analytic function whose real part is $\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$ 7M

OR

 7M
b) Using ${ }_{c}^{\text {te } J_{0}}$ Cauchy's integral formula, evaluate $\oint_{C} \frac{\operatorname{stn} \pi z^{2}+\operatorname{cosstz^{2}}}{(z-1)(z-2)} d z$ wher C is th e circle $\left.\right|^{z 1}=3$

b) By integrating around a unit circle, Evaluate $\ddot{\sim}$ 7M 7M
OR
8. a) State and prove Argument principle.
b) Determine the poles of the function e.
9. a) Find the bilinear transformation which maps the points \qquad onto 7M
b) Discuss the transformation $f(z)=z_{2}$ arnaps the families of lines $x=$ constant
and $y=$ constant into two families of confocal central conics.

b) Find the bilinear transformation which maps the points $=-1, \ldots$ onto $_{w} 1_{1,-_{\ldots}} 7 \mathrm{M}$
\square
|| B.Tech. II Semester Supplementary Examinations May 2018
Pulse and Digital Circuits
(Electrical \& Electronics Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) ******

UNIT-I

1. a) Derive the expression for the output of a high-pass circuit excited by exponential input and ramp for different time constants.
b) A 20 Hz symmetrical square wave whose peak to peak amplitude is 1 V is impressed upon a high -pass RC circuit whose lower $3-\mathrm{dB}$ frequency is 10 Hz . Calculate and sketch the output waveform for the first two cycles. What is the peak-to-peak output amplitude under steady-state conditions?

OR
2. a) Define following
i. Transmission Error
ii. Percentage tilt
iii. Attenuator.
iv. Over compensation
v. Linear wave shaping
vi. integrator
b) A square wave whose peak-to-peak value is 1 V extends $\pm 0.5 \mathrm{~V}$ with respect to ground. The duration of the positive section is 0.1 sec and of the negative section is 0.2 sec . if this wave form impressed upon an RC differentiating circuit whose time constant is 0.2 s , what are the steady-state maximum and minimum values of the output waveform? Prove that the area under the positive section equals that under negative section of the output waveform. What is the physical significance of the result?

UNIT-II

3. a) Give the circuits of different types of shunt clippers and explain their operation with the help of their transfer characteristics.
b) State and prove clamping circuit theorem. Sketch the output waveform that you would expect from the circuit shown in figure.

4. a) Explain transfer characteristics of emitter coupled clipper and derive necessary equations.
b) Draw the transfer characteristics for the clipper circuit shown. Assume ideal Diodes.

UNIT-III

5. a) Explain and Derive the expression for frequency of oscillation of an Astable multi vibrator.
b) Design a collector coupled Astable multivibrator using NPN silicon transistors with $\mathrm{h}_{\mathrm{fe}}=40, \mathrm{r}_{\mathrm{bb}}=200$ supplied with $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ and circuit component values are $\mathrm{R}_{\mathrm{c}}=1.2 \mathrm{~K}$ and $\mathrm{C}=270 \mathrm{pF}$.

OR

6. a) Explain the operation of a Monostable multivibrator and derive for the pulse width with necessary waveforms \& circuits.
b) Design a symmetric collector-coupled astable multivibrator to generate a square wave of 10 kHz having peak-to-peak amplitude of 10 V where, $h_{\text {FE }} \min =30, \mathrm{~V}_{\text {CE }}($ sat $)=0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}(\mathrm{sat})=2 \mathrm{~mA}$

UNIT-IV

7. a) Define and derive the terms slope error, displacement error and transmission error.
b) In the transistor bootstrap circuit, $\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=-15 \mathrm{~V}, \mathrm{R}=10 \mathrm{~K}, \mathrm{R}_{\mathrm{E}}=15 \mathrm{~K}$, $\mathrm{R}_{\mathrm{B}}=150 \mathrm{~K}, \mathrm{C}=0.05 \mu \mathrm{~F}$, and $\mathrm{C}_{1}=100 \mu \mathrm{~F}$. the gating waveform has a duration $\mathrm{Tg}=300 \mu \mathrm{~S}$. The transistor parameters are $\mathrm{h}_{\mathrm{fe}}=1.1 \mathrm{~K}, \mathrm{~h}_{\mathrm{re}}=2.5 \times 10^{-4} \mathrm{k} \quad \mathrm{h}_{\mathrm{fe}}=$ $50, h_{\text {oe }}=1 / 40 k$
a) Draw the waveforms of $I_{C 1}$ and V_{O}
b) What is the slope error of the sweep
c) What is the retrace time for C discharge completely.

OR

8. a) How is deviation of linearity expressed? What do you mean by sweep time and restoration time?
b) How a compensation circuit improves the linearity of a Bootstrap voltage time base generator? Discuss.

UNIT-V

9. a) Draw and explain with relevant waveforms the process of frequency division by an Astable multivibrator.
b) Explain about phase delay and phase jitters. 6 M

OR

10. a) Explain the synchronization of a sweep circuit with symmetrical signals.
b) Explain about unidirectional diode sampling gate. Write its advantages and disadvantages.
