Hall	Tick	et Number :	
Code		R_14	
		ech. II Semester Supplementary Examinations Nov/Dec 2018	_
		Mathematics-III	
May	Ma	(Common to EEE and ECE) rks: 70 Time: 3 Hour	~ C
		all five units by choosing one question from each unit (5 x 14 = 70 Marks	

		UNIT-I	
1.	a)	Evaluate $\int_0^1 x^5 \left(\log \frac{1}{x} \right)^3 dx$	7M
	b)	Separate $log sin(x + iy)$ into real and imaginary parts.	7M
2.	a)	OR Prove that $\beta\left(m, \frac{1}{2}\right) = 2^{2m-1}\beta(m, m)$	
	b)		7M
	0)	If $cosh(u + iv) = x + iy$ prove that $(i)\frac{x^2}{cosh^2u} + \frac{y^2}{sinh^2v} = 1$ (ii) $\frac{x^2}{cos^2u} - \frac{y^2}{sin^2v} = 1$	7M
3.	a)	UNIT-II $(\partial^2 + \partial^2) + c(x) + 2$	
0.		If $f(z)$ is a regular function of z , prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	7M
	b)	Find the analytic function whose real part is $e^{x}\{(x^{2} - y^{2})cosy - 2xy siny\}$ OR	7M
4.		Find the analytic fuction $f(z) = u + iv$, if $u + v = \frac{2sin2x}{e^{2y} - e^{-2y} - 2cos2x}$	14M
		UNIT-III	
5.	a)	Evaluate, using Cauchy's integral formula $\oint_C \frac{\sin^2 z}{\left(z-\frac{\pi}{6}\right)^3} dz$, where C is the circle $ z = 1$	7M
	b)	Find the Taylor's expansion of $f(z) = \frac{1}{(z-1)(z+1)}$ about the point $z = 1$	7M
		OR	
6.	a)	Evaluate $\int_{1-i}^{2+3i} (z^2 + z) dz$, along the line joining the points $(1, -1)$ and $(2, 3)$	7M
	b)	Find the Laurents series expansion of $f(z) = \frac{1}{(z-1)(z-2)}$ in the region	
		1 < z < 2	7M
7			
7.		Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where <i>C</i> is the circle $ z = 3$	7M
	b)	Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$	7M
		OR	
8.	a)	Find the sum of the residues of $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle $ z = 2$	7M
	b)	Use Rouche's theorem to show that the equation $z^5 + 15z + 1 = 0$ has one root	
		in the disc $ z < \frac{3}{2}$ and four roots in the annulus $\frac{3}{2} < z < 2$	7M
9.	a)	UNIT-V Find the bilinear transformation which maps the points $z = 1, i, -1$ onto $w = 2, i, -2$	7M
0.	b)	Prove that the transformation $w = e^z$	7M
		OR	
10.	a)	Prove that the tranformation $w = sinz$	7M
	b)	Find the bilinear transformation which maps the points $z = i, 1 - 1$ onto $w = 1, 0, \infty$ ****	7M

Hall T	icke	et Number :														
Code:	4G2	42	I	I		I	1				I				R-14	
		Tech. II Ser	nest	er S	•••			,			atior	ns N	0\	v/D	ec 2018	
				- 4					uits							
Max. I	Mar		(EIE	CTric	ai a	na E	lect	roni	cs Er	ngin	eerir	ng)			Time: 3 Ho	ours
		r all five units	sbyo	choc	sing		que *****		from	n ea	ch ui	nit (ł	5 x	14		
							****		T–I							
1.	a)	Explain the connected (tion	of N	/lillm	ann's	s the	orer	n co	onsid	leri	ing	a 3-ph sta	r 7M
	b)	in each pha	ase.	lfab	balar	iced	volta	age o	of 10	0 V	(L-L)	, 3- p	bh,	50	Ω impedance Hz supply is aw the vecto	S
0			- :	:• -I:-			1	OF				0				-1
2.			ally u	sing	2-wa	ittme	ter m	netho	d. De			•			it is measured y relations fo	
3.	a)			appli	icatio	on of	Lap	lace	trans	form	atior	n tec	hn	niqu	e to electrica	
	b)	circuit Analy				of P		rioc	oiroui	t uci		nlac	o t	ron	eforme	7M 7M
	D)	Obtain the s	step i	espc	1156		-L Se	OF		เนรเ	iy ia	place	eι	an	51011115.	7 111
4.	a)	advantages	as a	pplie	d to	elect	rical	circu	iits.						mention the	e 7M
	b)	Find the inv	erse	Lapl	ace t	rans				= -	[s+1]	10)(s+2) 2)((s+3	3)	7M
5.	a)	Obtain the [D.C.	Trans	sient	resp		UNIT e of F		_ eries	circ	uit.				7M
	b)								ich ai				<u> </u>		n R-L-C serie m approach.	s 7M
6.															$\frac{t}{t} + 2f(t) =$	
									ace	tran	sforn	n su	bje	ect	to the initia	al
		conditions c	of f(o	⁺) = 2	2 and	$d \frac{df(}{d}$	$\frac{(0+)}{t} =$	= 0								14M
_]						
7.	a) b)	Discuss the		•		•								'+ ı 	·) when a t	7M
	b)	π and f(x+2			enici	ents		ie iu	ICLIOI	i give	en by	/ 1(1)	- ((+11), when -π <t·< td=""><td>~ 7M</td></t·<>	~ 7M
			·					OF			_			_		
8.	a)		25 si									-			a voltage of e current and	
	b)	Discuss the	com	-				UNI	Г - -			-				7M
9.		An admittar	nce fu	unctio	on is	give	n by	Y(s) Of		² +6s +1	Re	alise	e th	ne n	etwork.	14M
10.		Find the firs	t and				2	n of	the d	rivinę	g poi	nt im	pe	edar	nce function	
					∠(5)	-	$\frac{s^2+1}{s(s^2)}$									14M

Hall	Tick	ket Number :								
Cod	e: 40	G241 R-14								
	II B.	Tech. II Semester Supplementary Examinations Nov/Dec 2018								
		Electrical Machines-II								
May		(Electrical & Electronics Engineering) arks: 70 Time: 3 Ho								
-		all five units by choosing one question from each unit (5 x 14 = 70 Mai								
		*****	,							
1.	a)	UNIT–I Derive an emf equation of a single phase transformer and define turns ratio	8M							
1.	a) b)									
	2)	voltage of 230 V, at 50 Hz and 50 turns. If the flux density in the core is								
		1 Tesla, calculate the net cross-sectional area of the core	6M							
_		OR								
2.	a)	 Give the constructional features of "CORE" and "Shell" types of transformers and give the advantages and disadvantages of each type 								
	b)		7M							
	-,	voltage on core losses.	7M							
	,	UNIT-II								
3.	a)	Define voltage regulation of a transformer. Deduce the expression for the voltage regulation	7M							
	b)									
	,	at half load and full load of 500 W. Determine the efficiency at 75% of full load	7M							
		OR								
4.	a)	Draw the equivalent circuit of a transformer and show how the constants of primary and secondary windings may be combined to give a simplified equivalent								
		circuit with the values of constants given in terms of secondary winding	7M							
	b)	Explain about the parallel operation of transformer	7M							
-	-)									
5.	a) b)		7M							
	D)	power to a balanced 3-phase load of 120 KVA at 0.8 pf. The input line voltage								
		is 11 KV and the turn's ratio of transformer (phase to phase) is 10. Determine								
		the line voltage line currents, phase voltages, phase currents on both primary	7M							
		and secondary sides. OR	7 101							
6.		A three phase transformer is used to step down the supply voltage from								
-		10000 V to 440 V. If the output capacity of the transformer is 132 kVA, find								
		the secondary and primary currents of the transformer	8M							
		With neat phasor diagram, explain the voltage regulation of 3-phase transformer	6M							

Page 2 of 2

UNIT-IV

- 7. a) What are the merits and demerits of the two types (cage and wound, or slipring) of rotors in induction motor?
 - b) A 4-pole, 3-phase, 50 Hz, IM supplies a useful torque of 160 Nm at 5 % slip. Calculate: rotor input, motor input, efficiency if friction & windage losses are 500 W and stator losses are 1000 W.

OR

- 8. a) Discuss about the effects of crawling and cogging on operation of an induction motor
 - b) A 10 KW, 400 V, 3-phase induction motor has full load efficiency of 0.87 and power factor 0.85. At stand still at rated voltage the motor draws 5 times full load current and develops a starting torque of 1.5 times full load torque. An autotransformer is installed to reduce the starting current to give full load torque at the time of starting. Calculate the voltage applied line current.

UNIT–V

- 9. a) Explain the tests to be carried out to draw circle diagram of an induction motor 8M
 - b) Explain the need of starters for starting of a 3 phase induction motor 6M

OR

- 10. a) Explain all the modes of operation of induction machine. Plot the neat characteristics.
 - A 3-phase squirrel cage induction motor has maximum torque equal to thrice the full load torque. Determine the ratio of starting torque to full load torque if started by:

- i. DOL starter.
- ii. Star delta starter.

The maximum torque occurs at 0.1 slip

7M

7M

7M

7M

6M

8M

	TICK	et Number : R-14												
ode:		244												
	B.Te	ch. II Semester Supplementary Examinations Nov/Dec 2018												
		Linear Control Systems												
Max	Mai	(Electrical and Electronics Engineering) rks: 70 Time: 3 Hou	irs											
		er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	015											

1.	a)	UNIT-I What are the important rules of the block diagram reduction techniques?	7											
	b)													
	0)	OR	7											
2.	a)	-												
	ь)	of feedback on sensitivity. Derive the transfer function of an armature controlled DC servo motor.												
	b)	UNIT-II												
3.	a)	Define steady state error and error constants of different types of inputs.	7											
•	b)	Damping factor and natural frequency of the system are .12 and 84.2 rad/sec												
	/	respectively. Determine the rise time (t_r) , peak time (t_p) ,Maximum peak												
		overshoot (mp) and setting time (t _s)	7											
4.	a)	OR What is meant by transient response and steady state response? Explain in												
	ω,	detail about various time domain specifications.	7											
	b)	Find the various static error constants for a unity feedback control system												
		whose open loop transfer function is $G(s) = \frac{10(s+2)}{s^2(s+1)}$	7											
		UNIT-III												
5.	a)	Explain the effect of adding poles and zeroes to characteristic equation on												
	b)	stability of the root loci. Sketch the root locus plot of a unity feedback system with open loop T.F is	4											
	0)	$k(s^2 - 2s + 2)$												
		$G(s) = \frac{k(s^2 - 2s + 2)}{(s + 21)(s + 3)(s + 4)}$	10											
		OR												
6.	a)	How RH criteria can be used to study the relative stability?	7											
	b)	Using Routh –Hurwitz criterion, check whether systems represented by the following characteristic equation are stable or not. Comment on the location of												
		following characteristic equation are stable or not. Comment on the location of the roots. Determine the frequency of the sustained oscillations if any												
		S ³ +20S ² +9S+100=0	7											
7	c)	UNIT-IV												
7.	a)	Derive the correlation between time domain and frequency domain specifications.	4											
	b)	Sketch the Bode plot Margin for the given system whose H(s)=1												
		$G(s) = \frac{1}{s(s+4)(s+2)}$												
		i. Determine the gain marginii. Find the phase margin for damping ratio of 0.5	10											
		OR	IC.											
8.	a)	List the advantages and disadvantages of Frequency response methods.	4											
	b)	Sketch the polar plot and discuss the stability of the system represented by												
		$G(s)H(s) = \frac{k}{s(s+1)(s+5)}$ UNIT-V												
		(s + 1)(s + 5)	10											
9.	a)	Explain the procedure for the design of Lag-Lead compensator.	7											
	с, b)	List the effects and limitations of Phase –Lag control.	7 7											
	-1	OR	1											
10.	a)	Explain the concept of state, state model, state space.	7											
10.	L-)	Write short notes on the following :												
10.	b)													
10.	D)	 i) Controllability and Observability ii) State Transition Matrix 												