Code: 4G242

|| B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Electrical Circuits-II

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A symmetrical star connected system has $\mathrm{V}_{\mathrm{RN}}=230 \angle 0^{\circ}$. The phase sequence is RYB. Find $V_{R Y}, V_{Y B}, V_{B R}$.

b) The input power to a three-phase load is 10 kW at 0.8 Pf . Two watt meters are connected to measure the power. Find the reading of higher reading wattmeter.

OR

2. a) The three impedances $Z_{1}=20 \angle 30^{\circ}, Z_{2}=40 \angle 60^{\circ}, Z_{3}=10 \angle-90^{\circ}$ are deltaconnected to a $400 \mathrm{~V}, 3-\varnothing$ system. Determine the phase and line currents.
b) A single wattmeter is connected to measure reactive power of a three-phase, threewire balanced load. The line current is 17 A and line voltage is 440 V . Calculate the power factor of the load if the reading of the wattmeter is 4488 VAR.

UNIT-II

3. a) Find the function $f(t)$ in terms of unit step function in the graph shown.

b) If $u(t)=1$ for $t>=0$ and $u(t)=0$ for $t<0$, determine the Laplace transform of $[u(t)-u(t-a)]$.

OR

4. a) Determine the inverse transform of $F(s)=(s+5) / s\left(s^{2}+2 s+5\right)$.
b) The voltage across the resistor in the parallel circuit shown is?

UNIT-III

5. a) A series R-L circuit with $R=30$ and $L=15 \mathrm{H}$ has a constant voltage $\mathrm{V}=60 \mathrm{~V}$ applied at $t=0$ as shown in the figure. Determine the current (A) in the circuit at $t=0+$.

b) In the circuit shown below, the switch is closed at $t=0$, applied voltage is $v(t)=50 \cos (102 t+\pi / 4)$, resistance $R=10$ and capacitance $C=1 \mu F$. The complementary function of the solution of ' i ' is?

OR

6. a) In the circuit shown below, the switch is closed at $t=0$, applied voltage is $v(t)=100 \cos (103 t+\pi / 2)$, resistance $R=20$ and inductance $L=0.1 \mathrm{H}$. The complementary function of the solution of ' i ' is?

b) For the circuit shown below, find the voltage across the capacitor C_{1} at the time the switch is closed.

UNIT-IV

7. a) What is the Fourier cosine series of $f(x)=\pi / 4-x / 2$, where $0<x<\pi$
b) The function f is defined by $f(x)=e^{x}$ for $-L<x<L$. Find its Fourier series.

OR

8. a) Compute the Fourier transform of the signal

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} f(t+2 k), \text { where } \\
& f(t)=\left\{\begin{array}{ccc}
t+1, & \text { for } & -1 \leq t<0 \\
1-t, & \text { for } & 0 \leq t<1 \\
0, & \text { else }
\end{array}\right.
\end{aligned}
$$

b) Compute the Fourier transform of the signal $x(t)=e-^{t} u(t)$.

UNIT-V

9. a) In the circuit shown below, find the Z-parameter $Z_{11}, Z_{12}, Z_{21}, Z_{22}$.

b) Obtain the transfer function $\mathrm{G}_{21}(\mathrm{~S})$ in the circuit shown below.

OR

10. a) Consider the impedance function $Z(s)=3(s+2)(s+4) /(s+1)(s+3)$. Find the value of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}$ and R_{∞} after realizing by first Foster method.
b) Consider the polynomial $P(s)=s^{4}+3 s^{2}+2$. Check whether the given polynomial $P(s)$ is Hurwitz or not. 7M

Code: 4G244

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Linear Control Systems

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks) ******

UNIT-I

1. Deduce the block diagram of the given signal flow graph. Also find the transfer function using Mason's gain formula

OR
2. For the mechanical system shown below, derive the transfer function. Also draw the force-voltage and force-current analogous circuits.

UNIT-II
3. Obtain the se of an unity feedback system whose open loop transfer
 time, peak time, settling time and peak over shoot

OR
4. Derive the response of under damped second order system with unit ramp input
5. a) By Routh stability criterion determine the stability of the system represented by characteristics equation $9 s^{5}-20 s^{4}+10 s^{3}-s^{2}-9 s-10=0$. Comment on the location of characteristic equation.
b) Define : Asymptotic stability; BIBO stability

OR

6. A unity feedback system has an open loop transfer function

$$
G(s)=\frac{\bar{s}^{2}+\frac{K}{+s+12)}}{}
$$

Sketch the root locus and determine the dominant closed loop poles with $\bar{\delta}=0.5$
Determine the value of K at th $_{\text {is point. }}$
UNIT-IV
7. The ope ${ }^{\text {n }}$ loop transfer function of a unity feedback system is given by $G(s)=\frac{1}{s(1+s) \overline{2}}$. Sketch the polar plot. Determine gain margin and phase margin

OR

8. Derive the frequency domain specifications of a second order system

UNIT-V

9. A unity feedback system has an open loop transfer function of $\begin{aligned} & \mathrm{em} \\ & G(s)=\frac{\kappa}{s(2 s+1)} \text {. }\end{aligned}$ Design a suitable lag compensator so that the phase margin is 40° and steady state error for ramp input is less than or equal to 0.214M

OR
10. a) Compute state transition matrix e^{At} where $A=\left[\begin{array}{lr}0 & 1 \\ -2 & -3\end{array}\right]$
b) Find the eigen values of the matrix given below: $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6\end{array}\right]$

Code: 4GC41

|| B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Mathematics-III

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Show that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
b) If $\cosh (u+i v)=x+i y$, prove that
(i) $\frac{x^{2}}{\cosh ^{2} u}+\frac{y^{2}}{\sinh ^{2} u}=1$
(ii) $\frac{x^{2}}{\cos ^{2} v}-\frac{y^{2}}{\sin ^{2} v}=1$

OR

2. a) Evaluate $\int_{0}^{\infty} e^{-a x} x^{m-1} \sin b x d x$ in terms of Gamma function.
b) Separate the real and imaginary parts of (i) $\sinh (x+i y)$ (ii) $\cosh (x+i y)$

UNIT-II

3. a) Prove that the function $f(z)$ defined by $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}(z \neq 0), f(0)=0$ is continuous and the Cauchy Riemann equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.
b) Find the conjugate harmonic of $v(r, \theta)=r^{2} \cos 2 \theta-r \cos \theta+2$. Show that v is harmonic.

OR

4. a) Determine the analytic function

$$
f(z)=u+i v \text { if } u-v=\frac{\cos x+\sin x-e^{-y}}{2(\cos x-\cosh y)} \text { and } f\left(\frac{\pi}{2}\right)=0 .
$$

b) Derive Cauchy-Riemann equations in polar coordinates.

UNIT-III

5. Find the Taylor's expansion of $f(z)=\frac{2 z^{3}+1}{z^{2}+z}$ about the point $z=i$.

OR

6. If $f(z)$ is analytic inside a circle C with centre at a, then for z inside C prove that

$$
f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+----+\frac{f^{n}(a)}{n!}(z-a)^{n}+----
$$

UNIT-IV

7. a) State and prove Residue theorem.
b) Evaluate $\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x$.

OR

8. a) Find the residue of $f(z)=\frac{z^{2}}{(z-1)^{4}(z-2)(z-3)}$ at its poles and hence evaluate $\int_{C} f(z) d z$ where C is the circle $|z|=2.5$.
b) Show that $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 a \cos \theta+a^{2}} d \theta=\frac{2 \pi a^{2}}{1-a^{2}},\left(a^{2}<1\right)$ 7M

UNIT-V

9. Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points $\mathrm{w}=\mathrm{i}, 0$, -i. Hence find the image of $|z|<1$,

OR
10. Show that the transformation effected by an analytic function $w=f(z)$ is conformal at every point of the Z-plane where $f^{\prime}(z) \neq 0$.

