|| B.Tech. II Semester Supplementary Examinations August 2021

 Applied Thermodynamics-I

 Applied Thermodynamics-I
 (Mechanical Engineering)

Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) List out the major losses in Actual cycles of IC Engines.
b) What are Air standard cycles? What are the assumptions made in the air standard cycles?
Write down the equation used for estimating the thermal efficiency of Air standard otto cycle
in terms of compression ratio? OR
2. a) The minimum pressure and temperature in an Otto cycle are 100 KPa and $30^{\circ} \mathrm{C}$. The amount of heat added to the air per cycle is $1500 \mathrm{KJ} / \mathrm{Kg}$. i) Calculate the pressure and temperature at all the points. ii) Calculate specific work and thermal efficiency of the cycle for a compression ratio of 9 .
b) Why the actual cycle efficiency is much lower the air standard cycle efficiency? 4 M

UNIT-II

3. a) List out the differences between two stroke engine and four stroke engine.
b) Elucidate the working of forced circulation cooling system with the help of neat sketch.

OR

4. a) What is carburetion? Explain the working of Simple Carburetor with neat sketch.
b) Compare and contrast between S.I engines with C.I engines.

UNIT-III

5. a) List out the characteristics of good combustion chambers and its types used in SI engines.
b) Explain the phenomena of knocking in petrol engines.

OR
6. List the various types of combustion chambers used in Cl engines and explain them with the help of neat sketch.

UNIT-IV

7. Explain the measurement of friction power by the following methods.
i) Willan's line method. ii) Motoring Test

OR

8. A four cylinder, four stroke petrol engine has a 10 cm bore, 15 cm stroke and uses a compression ratio of 6 . The engine develops 25 kW indicated power at 2000 rpm . Find the mean indicated pressure and air standard efficiency. Also calculate the fuel consumption per hour, if the indicated thermal efficiency is 30%. Take the calorific value of fuel as 42 $\mathrm{MJ} / \mathrm{kg}$.

UNIT-V
9. a) Explain the working principle of axial compressor with a neat sketch. Draw its velocity triangles and Show its velocity and pressure variation.
b) Write short notes about the importance of Intercooler used in air compressors.
10. a) With a neat sketch explain the working of roots blower and derive the expression for roots efficiency.
b) Write a short notes on multistage compression.

Code: 4GC42

II B.Tech. II Semester Supplementary Examinations August 2021
Probability \& Statistics
(Common to CE, ME and IT)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define the following (i) Sample Space (ii) event (iii) Outcome (iv) Probability
b) Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and15 orange marbles, with replacement being made after each drawing. Find the probability that (i) both are white (ii) first is red and second is white.

OR

2. a) State and prove Addition theorem on probability for two events.
b) If two dice are throw, Find the probability of getting a sum is 10

UNIT-II

3. A random variable X has the following probability function

X	0	1	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	K	2 K	2 K	3 K	$\mathrm{~K}^{2}$	$7 \mathrm{~K}^{2}+\mathrm{K}$

Find the value of K , (ii)Evaluate $p(0<x<5)$, (iii) Evaluate $p(x<5)$
OR
4. The mean and variance of a binomial variable X with parameters n and p are 16 and 8 . Find $P(x \geq 1)$ and $P(x>2)$

UNIT-III

5. A population consists of the four numbers 3, 7, 11, 15. Consider all possible samples of size 2 which can be drawn with replacement from this population. Find the population mean and standard deviation, and mean and standard deviation of the sampling distribution of means.

OR

6. It is desired to estimate the mean number of hours of continuous use untila certain computer will first require repairs. If it can be assumed that $\sigma=48$ hours, how large abe needed so that one will be able to assert with 90% confidence that the sample mean is off by at most 10 hours.
