Hal	II Tic	ket Number :														
~~d	a: 40	G542		<u> </u>									_		R-14	
Jour		3342 B.Tech. II Ser	nesi	ter S	บอก	lem	ent	arv I	Exar	mina	atior	ns N	ov/E	 ec 20)19	
				Арр				•					.,_			
							cal	-								
Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70 \text{ Marks}$)											ours					
4	Ansv	ver all five units	s by	choc	sing		que ****		tron	n ead	ch ur	nit (3	5 x 14	= 70 N	(larks	
							U	NIT-	ı							
1.	a)	Derive an expr	essio	on for	effic	iency	of C	Otto C	ycle.							7M
	b)	Find the air standard efficiency of a diesel cycle engine if the cut off is 6% of the														
	,	stroke and the				•			•	_						7M
								OR								
2.		Explain the following	lowin	g rele	evant	to a	ctual	cycle	es.							
		i) Heat lo														
		ii) Exhaus			n fac	ctor										4 4 5 4
		iii) Time lo	ss ta	Ctor					_							14M
2	۵)	Evaloia the we	مصاداته		ا ما اسلم	.1~~1		NIT–I				م مادن		rotob		71.4
3.	a) 	Explain the wo					•		-	-	•	vitri r	ieai si	keich.		7M
	b)	Elucidate the v	vorkii	ng of	torce	ed cir			oolin	g sys	tem.					7M
4.	a)	Discuss the di	ffere	nce h	etwe	en th		OR tical	and	actua	al val	ve tii	mina	diagran	n of a	
٦.	u)	diesel engine.	IICIC	1100 1	Civic	,cii ti	10010	Modi	ana	aotac	ai vai	vo tii	·······g	alagran	i oi a	10M
	b)	Justify the nee	d of	lubric	ation	in IC	c ena	ines.								4M
	~,		.					NIT-II								
5.		What is meant	bv a	bnor	mal d	comb				the	pher	ome	non c	of knock	in SI	
		engine.	, .								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					14M
								OR								
6.		Explain with fig	ures	the va	arious	s type	s of o	comb	ustior	n cha	mber	s use	ed in C	:I engine	es.	14M
							UN	IIT–I	V							
7.		The following of				•	•				•		_	•		
		•		anica			ency			0%,		ake	•	ecific	fuel	
		consumption=0.37kg/kW h, Calorific value of fuel = 44000 kJ/kg, Adiabatic index for air = 1.4, Find (i) brake thermal efficiency (ii) Indicated thermal efficiency														
		•		` '					•	` '					•	
(iii) Air standard efficiency. (iv) Relative efficiency with respect to indicated thermal efficiency and (v) Relative efficiency with respect to brake thermal efficiency.								14M								
								OR								
8.		In a trail of single cylinder oil engine working on dual cycle, the following observations were made.														
		Compression r	atio:	= 15				Oil	Cons	ump	tion	= 10.	2 kg/l	٦r		
		Calorific value	of fu	el = 4	13890) kJ/k	κg	Air	consi	umpti	on =	3.8 l	kg/mir	1		
		Speed = 1900	rpm					Tord	que c	n the	bral	ke dr	um =	186 N-r	n	
		Quantity of coo	oling	wate	r use	d = 1	5.5 k	g/mir	า							
		Temperature r										•		410°C		
		Room tempera					•							1.17 kJ	•	
		Calculate (i) B			. ,		-				•	tion	(iii) Br	ake Th	ermal	4 45 5
	Efficiency. Also draw heat balance Sheet on minute Basis. 141							14M								

Code: 4G542

UNIT-V

- 9. Following data relate to performance test of a single acting 14 cm * 14 cm reciprocating compressor. Suction pressure and temperature 1 bar 20°C, discharge pressure and temperature are 6 bar, 180°C, Speed of the compressor 1200 rpm, Shaft power 6.25 kW, Mass of air delivered 1.7 kg/min. Calculate the following
 - i) The indicated power
 - ii) The isothermal efficiency
 - iii) The mechanical efficiency
 - iv) The overall isothermal efficiency

14M

OR

- 10. a) With neat sketch, explain the working of Roots blower compressor.
- 7M

b) Compare Rotary and Reciprocating Air Compressor.

7M

Hall Ticket Number :							ì
			•		,	•	

R-14

Code: 4GC43

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Environmental Science

(Common to CE & ME) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ***** UNIT-I a) Write a note on multidisciplinary nature of environmental studies. 7M 1. b) How would environmental awareness help to protect our environment? 7M OR 2. a) Write a note on public awareness of environmental studies. 7M 7M Explain briefly the importance of environmental studies. UNIT-II a) Define Mineral resources. Explain about use and environmental effects of 3. extracting mineral resources. 7M Describe the impact of over grazing. 7M OR 4. Discuss in brief account on role of an individual in the conservation of natural resources. 14M **UNIT-III** Explain the Forest ecosystem with suitable examples. 7M 7M Write the formation of nitrogen cycle. OR a) Discuss the desert ecosystem with suitable examples. 7M 6. b) Explain brief about the conservation methods of biodiversity. 7M UNIT-IV Define Thermal pollution. Discuss in brief account on causes, effects and control 7. a) measures of Thermal pollution 7M b) Write the effects of nuclear radiation on environment. 7M OR a) Write a detailed note on consequences of soil pollution. 7M 8. b) Describe the causes of ozone layer depletion. 7M UNIT-V a) Explain in detail about the advantages of rain water harvesting. 7M 9. Write a note on forest conservation act. 7M OR a) Describe family welfare programmes in India. 7M 10. 7M b) Value education has an important effect on environmental conservation. Justify.

	Hall	Ticket Number :									
	Cod	e: 4G544									
		II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019									
		Manufacturing Technology									
	Mar	(Mechanical Engineering) x. Marks: 70									
	_	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************									
		UNIT-I									
1.		Sketch and Explain different types of patterns used in foundry.									
2.		OR Calculate the ratio of solidification times of two steel cylindrical risers of sizes 36cm									
۷.		in diameter by 72 cm height and 72cm in diameter by 36 cm in height subjected to identical conditions of cooling.									
		UNIT-II									
3.	a)	What are the various types of welded joints with sketch?									
	b)										
		OR									
4.		Give the principle of Gas welding. Explain its construction with various types of flames. UNIT-III									
5.		A 450 x 25mm strip is fed through a rolling mill with two powered rolls of radius 350mm, the strip thickness is to be reduced to 20mm in one pass at a roll speed of 60 rev/min. Yield strength of strip material is 175 N/mm ² .									
		Determine (i) Coefficient of friction (ii) Roll force (iii) Power									
		OR									
6.		Write short notes on any Two of the following (2X7=14M) a) Deep drawing. b) Tube drawing c) Wire Drawing									
7.		UNIT-IV Discuss the forward and backward extrusion process and their advantages, applications of process.									
		OR									
8.		Describe the following process with neat sketches and mention advantages and disadvantages									
		(i) Drop Forging (ii) Roll forging (iii) Rotary forging									
9.	a)	What are some of the reasons why plastic shaping processes are important?									
Э.											
	b)	Give the classification of various types of methods for processing plastics and its applications?									
40	_ \	OR									
10.	a) b)	Explain the effect of spring back? How it is compensated.									
	b)	Define the following i) Blanking.									

ii) Piercingiii) Trimming.

Hall Ticket Number :

Code: 4GC42

R-14

II B.Tech. II Semester Supplementary Examinations Nov/Dec 2019

Probability and Statistics

(Common to CE, ME and CSE)

Max. Marks: 70 Time: 3 Hours

PART-A

Answer the following units by choosing one question from each unit ($3 \times 14 = 42$ Marks)

UNIT-I

1. Given P(A)=1/4, P(B)=1/3 and $P(A \cup B) = 1/2$, then evaluate P(A/B), P(B/A), $P(A \cap B')$ and P(A'/B')

14M

OR

2. A random variable *X* has the following probability function values of *X*.

X:	-2	-1	0	1	2	3
p(x):	0.1	K	0.2	2k	0.3	k

Find the value k, $P(X \ge -1)$, $P(X \le 2)$, mean and variance

14M

UNIT-II

 a) The probability that a pen manufactured by a company will be defective is 1/10. If 12 such pens are manufactured, find the probability that (a) exactly two will defective, (b) at least two will be defective and (c) none will be defective.

7M

b) Fit a Poisson distribution to the frequency distribution

x:	0	1	2	3	4
f:	46	38	22	9	1

7M

OR

4. a) The weekly wages of workers in a company are normally distributed with mean of Rs. 700 and standard deviation of Rs. 50. Find the probability that the weekly wage of a randomly chosen worker is (i) between Rs. 650 and Rs. 750, and (ii) more than Rs. 750.

7M

b) For the normal distribution with mean 2 and standard deviation 4, evaluate (i) P(-6 < x < 3), (ii) $P\{x \ge 5\}$ and (iii) $P(\{|x| < 4\})$.

7M

UNIT-III

5. A population consists of the four numbers 3, 7, 11, 15. Consider all possible samples of size 2 which can be drawn with replacement from this population. Find the population mean and standard deviation, and mean and standard deviation of the sampling distribution of means.

14M

OR

Code: 4GC42

6. a) The standard deviation of the life-times of television tubes manufactured by a company is estimated as 100 hours. Find how large a sample must be taken in order to be 99% confident that the error in the estimated mean life-time will not exceed 20 hours

7M

b) Find 95% confidence limits for the mean of a normality distributed population from which the following sample was taken 15,17,10,18,16,9,7,11,13,14.

7M

UNIT-IV

7. a) A sample of 400 items is taken from a population whose standard deviation is 10. The mean of the sample is 40. Test whether the sample has come from a population with mean 38. Also calculate 95% confidence interval for the population

7M

b) Experience had shown that 20% of a manufactured product is of the top quality. In one day production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05 level

7M

OR

8. The mean yield of wheat from a district A was 210 pounds with S.D 2.5 inches per acer from a sample of 100 plots. In another district the mean yield was 220 pounds with S.D 12 pounds from a sample of 150 plots. Assuming that the S.D of yield in the entire state was 11 pounds. Test whether there is any significant difference between the mean yield of crops in the two districts

14M

14M

UNIT-V

9. In an investigation on the machine performance, the following results are obtained

	No. of units inspected	No. of defectives
Machine I	375	17
Machine II	450	22

Test whether there is any significant performance of two machines at = 0.05

OR

10. From the following data, find whether there is any significant liking in the habit of taking soft drinks among the categories of employees

Employees

Soft Drinks	Clerks	Teachers	Officers
Pepsi	10	25	65
Thumsup	15	30	65
Fanta	50	60	30

14M
