Code: 4G344

|| B.Tech. II Semester Supplementary Examinations February 2022

Field Theory and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) State and explain Coulomb's law? Obtain an expression of it in vector form.
b) Point charges 1 mC and -2 mC are located at (3, 2, -1) and ($-1,-1,4$) respectively. Calculate the electric force on a 10 nC charge locate at $(0,3,1)$ and the electric field intensity at that point.

OR

2. a) State and Prove Gauss's law and Derive D and E due to infinite line charge.
b) Define Electric field intensity? Derive Electric field intensity for surface charge.

UNIT-II

3. a) Define current and current density? Differentiate convection and conduction currents.
b) Discuss the properties of dielectric materials.

OR

4. a) Write a short note on the following i) dielectric constant and dielectric strength
ii) Polarization.
b) Explain the procedure to find the Resistance and capacitance for non-uniform cross section of the conductor.

UNIT-III

5. a) Analogy between Electric and Magnetic field?
b) Write a short note on the following i) magnetic flux ii) magnetic flux density, iii) Magnetic field intensity or (strength)

OR

6. a) With neat diagram explain Biot Savarts law and write H equations for three current
distributions.
b) Planes $z=0$ and $z=4$ carry current $K=-10 a_{x} A / m$ and $K-10 a_{x} A / m$, respectively Determine H at (i) $(1,1,1)$ (ii) $(0,-3,10)$

UNIT-IV

7. a) Write a short note on the following i) wave length ii) skin depth iii) propagation constant
iv) intrinsic impedance.
b) Explain the waves in general.

OR

8. a) Derive an expression for reflection coefficient and transmission coefficient when a plane wave is incident normally on an interface between two different media.
b) In free space $(z<0)$, a plane wave with $H_{i}=10 \cos \left(10^{8} \mathrm{t}-\beta \mathrm{z}\right) \mathrm{a}_{\mathrm{x}} \mathrm{mA} / \mathrm{m}$. is incident normally on a lossless medium $\left(\epsilon=2 \epsilon_{0}, \mu=8 \mu_{0}\right)$ in region $z \geq 0$). Determine the reflected wave H_{r}, E_{r} and the transmitted wave $\mathrm{E}_{\mathrm{t}}, \mathrm{H}_{\mathrm{t}}$.

UNIT-V

$\begin{array}{lll}\text { 9. a) Define with mathematical equations of the following : i) characteristic impedance } & \text { ii) } \\ \text { attenuation constant iii) velocity of propagation iv) wave length } & 7 \mathrm{M}\end{array}$
b) Draw and explain about standing waves in OC and SC lines. 7M

OR
10. a) Derive the transmission line equation
b) Discuss about the Reflection coefficient with relevant expressions.

