Code: 4G344

II B.Tech. II Semester Supplementary Examinations March 2021

Field Theory and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Charges of 20 nC and -20 nC are located at $(3,0,0)$ and $(-3,0,0)$ respectively. Calculate the magnitude of Electric field intensity at origin.
b) Given the electric flux density, $\mathrm{D}=0.3 \mathrm{r}^{2} \mathrm{a}^{r} \mathrm{nC} / \mathrm{m}^{2}$ in free space. Find Electric field intensity E at point $P\left(r=2, \theta=25^{\circ}, \phi=90^{\circ}\right)$

OR

2. a) i. Apply Gauss law to calculate Electric field due to point charge Q.
ii. Assume zero potential at infinity, Determine the potential at a distance ' r ' from the point charge Q.
b) Two point charges $-4 \mu \mathrm{C}$ and $5 \mu \mathrm{C}$ are located at ($2,-1,3$) and ($0,4,-2$), respectively. Find the potential at $(1,0,1)$ assuming zero potential at infinity.

UNIT-II

3. a) Consider a conductor of uniform cross section S and length I connected to a source of electromotive force. Assume electric field E exists inside the conductor to sustain flow of current. Determine the resistance of conductor.
b) Define boundary conditions? Determine the boundary conditions at dielectricdielectric interface.

OR

4. a) Define capacitance of a capacitor. Determine the capacitance of parallel plate capacitor.
b) State Continuity of current equation. Derive Continuity equation. Express the Continuity equation for steady currents and what do you infer from this expression.

UNIT-III

5. a) State Biot-Savarts law. How to determine the direction of magnetic field intensity.

OR

6. a) State Amperes Law. Apply Amperes circuit law to determine magnetic field for Infinite sheet of current.

[^0]UNIT-IV
7. Compute the following param ${ }_{1 \text { eters for }}$ mist soil $\epsilon_{\mathrm{r}}=16$, and $\sigma=5 \mathrm{mS} / \mathrm{m}$ atfrequency of 100 MHz .
i. Propagation constant $\hat{\gamma}$
ii. Attenuation constant α
iii. Phase constant β
iv. Intrinsic impedance $\hat{\eta}$
v. Skin depth δ_{c}
vi. Tangent loss tan δ 14M
OR
8. a) Explain skin depth and derive expression for depth of penetration for good conductor. 7M
b) Find skin depth for a copper conductor at frequency 1 MHz . The conductivity of copper is $5.8^{*} 10^{7} \mathrm{~S} / \mathrm{m}$ and $\mu_{\mathrm{r}}=1$. 7M
UNIT-V
9. a) Explain the meaning of the terms characteristic impedance and propagation constant of a uniform transmission line and obtain the expressions for them in terms of parameters of line. 7M
b) Calculate the reflection coefficient and VSWR for a 50 lines, terminated with
i) matched load. ii) short circuit. 7M
OR
10. a) Derive the expression for the input impedance of a transmission line of length L 7M
b) Explain the applications of smith chart. 7M

Code: 4GC41

II B.Tech. II Semester Supplementary Examinations March 2021

Mathematics-III

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

		Marks	co	$\underset{\text { Level }}{\text { Blooms }}$
	UNIT-I			
1. a)		7M	2	II
	Find all the roots of	7M	2	1
	oots of $\operatorname{Sin}^{2} z=$			
2. a)		7M	2	11
b)	Find all values of z which satisfy $=\underline{=} \underline{(\underline{n}}-2$.	7M	2	I
	UNIT-II			
	Show that	7M	1	1
	Find all the values of k such that	7M	1	I

4. a) Show that the function ${ }^{\text {ich that }}{ }^{\circ}(z)=e^{3}$ not analytic at the origin, although Cauchy- Riemann equations are Satiofied at the point.
b) Find k such that

UNIT-III

5. a) Evaluate $\int_{C}=2 d \approx=$ whore c is the straight line segment from $O(z=0)$ to $A(z=2+i)$.

OR

 with the vertices at $1 \pm i$ and $-1 \pm i$.
 $1<|z|<z$.

UNIT-IV

7. a) Show that $\int_{-\infty}^{\infty} \frac{\cos a x}{x^{2}+1} d x=\pi e^{-a, a \mid=1}=1$.
7M 3 II
 $f(z)=2 z 4-2 z 3+2 z z^{2}+2 z+ \pm 1$, that lie inside the circle $\mid z 1=1$.

7M 3 III

8. Solve $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a \overline{2}\right)\left(x^{\bar{z}} \overline{+b} \overline{2}\right)} d x, a>0^{\prime 2} b>, a \neq b . \quad 14 \mathrm{M} \quad 3 \quad$ III

UNIT-V

9. a) Illustrate the imge of the infinite strip $0<{ }_{y<\frac{1}{2}}$ under the transformation $w=\frac{1}{z}$.
b) Find the bilinear transfor ${ }_{\text {mati }}$ on that maps the point $(0,1, \infty)$ in the z-plane onto the point $(-1,-2,-i)$ in the w-plane.

OR

 transformation $w=\operatorname{Sin} z$.
 $w_{1}=-1, w_{2}=-i, w_{3}=1$ respectively.

[^0]: b) Relate Scalar and Vector magnetic potentials to Magnetic field Intensity.

