	ICKE	t Number :											
Code	: 4G	343 R-14											
	ll	B.Tech. II Semester Supplementary Examinations May 2017											
		Analog Communication											
Max	Mo	(Electronics and Communication Engineering) rks: 70 Time: 3 Ho	ı ırc										
	-	er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	013										
		UNIT–I											
1.	a)	Define modulation. What do you mean by frequency translation?											
	b)	The positive RF peaks of an AM voltage rise to a maximum value of 12 V and drop to a minimum value of 4 V. What is the modulation index?											
	c)	A modulating signal given by $w(t) = 2 \sin (2f \times 500 t) + 2 \sin (2f \times 1100 t) + 5 \sin (2f \times 1200 t)$ amplitude											
		$m(t) = 2\sin(2f \times 500t) + 3\sin(2f \times 1100t) + 5\sin(2f \times 1300t)$ amplitude											
		modulates a carrier given by $c(t) = 10 \sin(2f \times 10^6 t)$, where all amplitudes are											
		in volts. Determine i. The total modulation index											
		ii. The frequencies present in the modulated signal.											
		^{iii.} The total transmitted power.	ç										
		OR											
2.	a)												
2.	u)	spectra.	6										
	b)	Explain briefly the working principle of balanced modulator											
	c)	Write the advantages of SSB-SC modulation											
		Write the advantages of SSB-SC modulation UNIT-II											
3.	a)	An FM wave is given by $s(t) = 10\cos(16f \times 10^6 t + 20\sin 2f \times 10^3)$. Determine											
		i. The carrier and modulating frequency											
		ii. The modulation index and maximum deviation.											
		iii. Power dissipated by this FM wave in a 100 ohm resister	6										
	b)) Explain with suitable diagram, how the Narrow band FM signal may be generated.											
	c)	What is the theoretical bandwidth required for Narrowband FM transmission? Justify.	2										
		OR											
4.	a)	Compare AM and Narrowband FM	2										
	b)) Between AM and FM which is more noise immune? Why?											
	c)	A message signal x(t)=100sin(2000)t frequency modulates a carrier signal $C(t) = 200\cos(2f \times 10^8)t$ with a modulation index of 5. Find											
		I. Write down the expression for FM signal.											
		II. What is the peak frequency deviation?											
		III. What is the average power of the modulated signal?											
		IV. What is bandwidth of the modulated signal?	8										

		UNIT–III	
5.	a)	Explain SNR in analog communication system.	4M
	b)	Give the calculation of signal power and noise power in SSB-SC AM system.	8M
	C)	What is white in white noise?	2M
		OR	
6.	a)	Differentiate between pre-emphasis and de-emphasis.	4M
	b)	Does the reduction in frequency range improve SNR in both SSB and DSB-SC reception? Why?	4M
	c)	What is the threshold effect of FM signal?	6M
		UNIT–IV	
7.	a)	Explain Variable reactance type and phase modulated FM Transmitter	8M
	b)	Explain briefly about radio transmitter.	6M
		OR	
8.	a)	Draw the block diagram of super heterodyne receiver and explain the importance of intermediate frequency.	8M
	b)	Explain how frequency stability in FM Transmitter is achieved.	6M
		UNIT–V	
9.	a)	What is pulse modulation? Explain its advantages over continuous wave modulation. Discuss the application of pulse modulation. Enumerate the types	
		of pulse modulation.	7M
	b)	Describe the operation of PWM and PPM technique.	7M
		OR	
10.	a)	Write a short note on time division multiplexing	7M
	b)	Explain how multiple channels are multiplexed using FDM. Draw appropriate sketches.	7M

- b) Show that when two 2-port networks N1 and N2 are connected in parallel the equivalent Y-parameters of the combined network is the sum of Y-parameters 7M of each individual 2-port network.
 - UNIT–II
- a) In the given network ,switch k is closed at t=0 with zero current in inductor .Find the values of I, di/dt and d²i/dt² at t-0+ if R=10 , L= 1 H and V=100V

b) **Develop** expression for current in series RLC circuit with DC excitation. 7M

4. a) **Determine** i(t) for t>0 in the circuit shown below

7M

7M

b) The switch in the circuit has been closed for a long time when the switch is opened at t=0 a) i_{L} (t) for t>0 b) **Determine** i_{L} (10 m sec) c) t_{1} if i_{L} (t_{1}) =0.5 i_{L} (0) 7M

			45
		UNIT–III	
5.	a)	Relate the characteristics of pass band and stop band filters, explain them.	7M
	b)	Discuss about constant k low pass and high pass filters.	7M
		OR	
6.	a)	Design constant k high pass filter with characteristic impedance of 600 ohms and to pass frequency above 20kHz.	7M
	b)	Design T- type attenuator to provide attenuation of 25 dB. Take characteristic impedance of 100 ohms.	7M
		UNIT–IV	
7.	a)	Explain various methods of speed control of dc shunt motor.	7M
	b)	Explain and draw characteristics of dc generator and dc motor.	7M
		OR	
8.	a)	Discuss torque equation of dc motor	7M
	b)	Explain about three point starter.	7M
		UNIT–V	
9.	a)	Explain how the efficiency of a transformer may be estimated from open circuit	
		and short circuit tests.	7M
	b)	Justify the statement " single phase motor is not self starting"	7M
		OR	
10.	a)	Explain the operation of capacitor start and capacitor run motor	7M
	b)	Discuss stepper motor and its characteristics.	7M

^~	de: 4G344		<u> </u>		<u> </u>			R-14
0		Semester S		emen	tarv Ex	amir	nations I	May 2017
		Field The	•••		,			-,
	-	Electronics	and Co	ommu	nicatio	n Eng	ineering	
Ι	Max. Marks: 70 Answer all five ur	nits by choosi	ng one	auesti	ion from	each	unit (5 x	Time: 3 Hou 14 = 70 Marks)
		,	. 9	***				,
a)	Dreve that diverge		. f a 1/2 at			~ Ctal		
a) b)	Prove that diverge					•		
b)	State Ampere's circ 'b' and carries curre				•••			
		Ū		ο	R		-	
a)	Define electric field	intensity inter	ms of p	oint ch	arge an	d desc	ribe its sa	alient features.
b)	Two point charges						•	, ,
	respectively. Deter		and heid	at Q ₁ :		⊏xpial	n me step	
a)	Derive an expressio	n for the capac	citance o			e capa	acitor havir	ng two dielectric me
b)	The capacitance of	•		•		•		•
-,	separated by a diel	ectric 2mm thi	ick is, 2>	<10 ⁻¹⁰	micro far	ad, a	potential o	of 20KV is applied
	Find (i) Electric flux Electric flux density.	•	radient i	n kV/m	n (iii)	The re	elative per	mittivity of materials
	Liotaio nux density.			0	R			
a)	Derive an expressi	on for the car	acitance			ansmi	ssion line	
b)	Drive an expression	•						
,		lier energy et		UNI				
a)	Derive the expressi	ons for magne	etic flux			o solei	noid of the	e coil.
b)	Define magnetic v	ector potentia	al. Deriv	ve exp	ressions	for p	ootential f	unctions of sinus
	oscillating functions	.						
				0				
a)	Derive the expressi an uniform field.	on for torque	develop	ed in a	a rectanç	gular c	losed circ	cuit carrying curren
b)	An iron ring with a	cross section	al area	of 3cm	n ² and m	ean c	ircumfere	nce of 15 cm is wo
0)	with 250 turns wir							
	Calculate the flux e	stablished in t	the ring.					
				UNIT	IV			
a)	State and derive co	· ·	•					••
b)	Assume that E and with a perfect diel		•		•		•	
	transmitted E and H					agritt		
				0	R			
a)	Derive the expressi	on for the atte	enuation	const	ant, pha	se cor	nstant and	l intrinsic impedanc
	for a uniform plane	•						
b)	Derive the one dimer	isional general	wave eq			the sol	ution for wa	ave equation.
- >		f in due f				LI- •		
a) ⊾)	Explain the effect o		•	•				internet of one i
b)	A 75 ohm transm Determine its input		•					
	original operating fr	•				•		
				0	R			
a)	Derive the Z _{in} equation Derive the circle eq				lalf wave	line. N	lention the	ir applications.

—														
		Ticket Number :										R -1	4	
C	ode	e: 4GC41 B.Tech. S	Semest	≏r Su	nnlen	nenti	arv I	- Exar	ninc	ıti∩n	י אמי			
			Jerriesh		Nathe				11110	mon	57410	y 2017		
		. Marks: 70 Answer all five uni	ts by cho	-			on fro	-		nit (5	5 x 14 =	Time: 3 = 70 Marl		
1.	a)	Show that $s(m,$	$n = \frac{\Gamma(n)}{\Gamma(n)}$	r(n))									
			<i>Γ</i> (<i>ν</i>	n+n)										7M
	b)	If $\tan(x+iy) = x$	A+iB , s	now th	hat A^2 +	$B^{2} +$	2Acc	ot $2x =$	= 1					7M
						OR								
2.	a)	Given that $\int_{0}^{\infty} \frac{x^{n-1}}{(1+1)^{n-1}} \Gamma(n)\Gamma(1-n) = -\frac{1}{8}$,				nce fi	nd T	$\left(\underline{1}\right)$	$\Gamma\left(\frac{3}{2}\right)$				7M
		$(n)^{1}(1 n)^{-1}$ s	in <i>nf</i>	51 0 <	<i>n</i> <1 u				(4)	·(4)				
	b)	Find the real and	l imagina	ry par	ts of In	$\cos(x)$	+iy	•						7M
3.	a)	State and prove	Cauchy	Poima		UNI		artes	ian fo	vrm				7M
5.														7 101
	b)	If $v(r, r) = \left(r - \frac{1}{r}\right)$	$-\int \sin \pi$	r ≠ 0,†	then fin	d an a	inalyt	ic fur	nction	f(z) = <i>u</i> +	- <i>iv</i> .		7M
						OR								
4.		Determine an	analytic	functi	on $f($	z) = u	+iv,	if	<i>u</i> – <i>v</i>	$=\frac{\cos^2}{2($	$\frac{s x + si}{\cos x - s}$	$\frac{n x - e^{-y}}{-\cosh y}$	and	
		$f\left(\frac{f}{2}\right) = 0.$			Г									14M
						UNI								
5.	a)	Evaluate $\int_{c} \frac{\cos f}{z^2 - z^2}$	$\frac{z}{1}dz$, us	ing C	auchy's	s inte	gral	formu	ula	arour	nd a i	rectangle	with	
		vertices $2\pm i$, -2	$2\pm i$.											7M
	b)	Expand $f(z) =$	$\frac{(z-1)}{(z+1)}$ in	Taylo	or's seri	es abo	out th	ne poi	int z	=1.				

b) Expand
$$f(z) = \frac{(z-1)}{(z+1)}$$
 in Taylor's series about the point $z = 1$. 7M

OR

6. a) Evaluate $\int_{c} |z|^2 dz$ around the square with vertices at (0,0), (1,0), (1,1) (0,1) 8M

b) Expand $f(z) = \frac{z}{(z-1)(z-3)}$ for |z-1| < 2. 6M

Code: 4GC41

7. a) Using Cauchy's residue theorem, evaluate $\int_{c} \frac{e^{2z}}{(z+1)^4} dz$, where c is the circle |z| = 27M

b) Use Rouche's theorem to solve $p(z) = z^4 - 5z + 1$, annulus region 1 < |z| < 2. 7M

UNIT-IV

OR

8. a) Evaluate
$$\int_{c} \frac{(z-3)}{z^2+2z+5} dz$$
, where c is the circle $|z+(1+i)| = 2$. 7M

b) Evaluate
$$\int_{c} \frac{f'(z)}{f(z)} dz$$
 where $f(z) = \frac{(z^{2}+1)^{2}}{(z^{2}+2z+2)^{3}}$, $c: |z| = 4$
UNIT-V

- 9. a) Show that the straight lines parallel to the co-ordinate axes in the z-plane maps onto parabolas in the w-plane under the transformation $w = z^2$. Indicate the region with sketches. 7M
 - b) Find the bilinear transformation which maps z = 1, i, -1 into $w = 0, 1, \infty$ Also find the fixed points of the transformation. 7M

OR

- 10. a) Show that the transformation $w = \frac{i(1-z)}{(1+z)}$ maps the circle |z| = 1 into the real axis of the w-plane and the interior of the circle |z| < 1 into the upper half of the w-plane. 7M
 - b) Find the bilinear transformation which maps the points z = -1, *i*, 1 into w = 1, *i*, -1. Also find its invariant points. 7M

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 4G341

Max. Marks: 70

II B.Tech. II Semester Supplementary Examinations May 2017

Random Variables and Random Processes

(Electronics and Communication Engineering)

Time: 3 Hours

R-14

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

- 1. a) Define probability and state the three axioms of probability
 - b) Define random variable and explain the conditions for a function to be a random variable
 - c) In a lot of 100 chips (semiconductor) 20 are defective .Two chips are selected at random without replacement , from the lot
 - i. What is the probability that the first one selected is defective.
 - ii. What is the probability that the second one selected is defective. Given that the first one selected is defective.
 - iii. What is the probability that both are defective?

OR

- 2. a) Define probability density function and state its properties
 - b) In a communication system three symbols 0, 1, 2, are transmitted. The events are Ai and Bj, where i= 1,2,3 and j= 1,2,3 to represent symbols after and before the channel respectively. The channel transition probabilities are all equal at p(Ai/Bj)=0.1, for i j and p(Ai/Bj)=0.8 for i=j =1,2,3, while symbol transmission probabilities are p(B1)=0.5, p(B2)=0.3 p(B3)=0.2
 - i. compute the received symbol probabilities P(A1),P(A2),P(A3).
 - ii. compute the error probabilities .

UNIT–II

3. a) Define expectation of a random variable& obtain the variance of a uniformly distributed random variable whose probability density function is given by

$$f_{x,x}(x) = \frac{1}{b-a} a < x < b$$

b) A military installation has six similar radars placed in operation. the radars probability of failing to operate before 500 hours of "on " time have accumulated is 0.06.what are the probabilities that before 500 hours have elapsed (i) all will operate (ii) all will fail (iii) only one will fail .

OR

- 4. a) Show that the mean and variance of a poisson distributed random variable are equal.
 - b) The notation μ_n denotes the n^{th} central moment then prove that $\mu_0{=}1~\mu_1{=}0~\mu_2{=}variance.$

UNIT–III

- 5. a) Define the joint density function of c and prove its properties.
 - b) The joint density function of two random variables X&Y , $f_{x,y}(x,y) = a(2x+y^2)$,0<x<2, 2<y<4. find (i) the value of 'a' (iii) P{x<1,y>3}

OR

- 6. a) Show that for two random variables X&Y , to be statistically independent $f_{x,y}(x,y)=, f_{x,x}(x) f_y(y)$
 - b) The joint density function of two random variables X&Y , $f_{x,y}(x,y) = 0.25(e^{-|x|-|y|})$
 - <x< -. <y<
 - i. Are the random variables X and Y statistically independent.
 - ii. Find the probability of the event $p{X \le 1, Y \le 0}$.

UNIT–IV

- 7. a) Define a Random process, what are the conditions for a random process to be wide sense stationary.
 - b) An ergodic random process X(t) has an autocorrelation function

$$R_{XX}$$
.^(s)= 18+ $\frac{2}{6+s2}$ (1+4cos(12s)

- i. Find mean of X(t)
- ii. Average power in X(t)
- iii. Is x(t) consisting of any periodic components.

OR

- 8. a) If X(t) is a wide sense stationary random process with autocorrelation function R_{xx} (t,t+s),state any four properties of autocorrelation and prove them.
 - b) Show that the random process X(t)=Acos (Wt+) is wide sense stationary if it is assumed that A andW are constants and is a uniformly distributed random variable on the interval (0,2)

UNIT–V

- 9. a) Define power spectral density of a random process X(t) and state its properties with necessary proof.
 - b) Which $\varepsilon_{imc_{yr}ig}$ the follow ving are valid power spectral density functions $\frac{COSBW}{-2+W4} = e^{-(W-1)2} = \frac{W^2}{W6+3W2+3}$

OR

- 10. a) Show that the autocorrelation function and power spectral density are a fourier transform pair.
 - b) The autocorrelation function of a wide sense stationary random process is $R_{XX}.^{(s)} {=} k e^{-|s|k}$

obtain its power spectral density.

На	ll Ti	cket Number :															
Cod	de:	4G342		<u>]</u>	I				I							R-14	
II B.Tech. II Semester Supplementary Examinations May 2017																	
Switching Theory and Logic Design																	
• •	(Electronics and Communication Engineering)																
Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)												0015					
********* UNIT–I																	
1.	a)	Convert the fol	lowin	a to	Deci					tal (i) <i>(11</i>	234),	(ii) (1	0010	011)	
	a)	Convert the fol		•							, ,		`	, ,		,	2 8M
	b)	Find the comp		-								. ,					
	5)	number of liter					•		loan	Turic		ana	100	auoc	, 1110		6M
	OR																
2.	a)	State and prov	e De	-Mor	gans	s the	orem										6M
	b)	Convert the gi	ven	equa	tion	Y=A	B+A(C'+B(C int	o sta	ndar	d SO	OP	forr	n. Ex	press th	ne 8M
		Boolean function	on F=	= xy ·	+ x' z	as a	a pro	duct	of m	axter	ms						OIVI
							JNIT-										
3.		Simplifying the		Ŭ	•			•				•					4 4 5 4
		F= m(0,1,2,8,9	9,15,	17,2	1,24,	25,2	7,31		•	eme	nt us	sing r	٩O	к ga	ates		14M
4		Circulify the f	مالم	:	Deel			OR			K a			ما ام		a	
4.		Simplify the for using NAND ga		•			•			•		•			ipiem	ent the	m 14M
		5 5		· ·	, , ,	· ·	NIT-										
5.	a)	Draw the logic	diag	ram	of ful				and	orm	the t	ruth	tak	ole.			6M
	b)	Design 32:1 M	ux นร	sing t	two 1	6:1 I	Muxs	and	one	2:1 N	∕lux.						8M
								OR	2								
6.	a)	Design and im	plem	ent t	he fo	llowi	ng B	oolea	an fu	nctio	ns in	PAL					
		(i) A(w,x,y,z)=							•			•					8M
		(iii) C(w,x,y,z)=						. ,	•	x,y,z))= m	า(1,3	,4,	6,9,1	12,14))	
	b)	Realize f= m(0	0,2,3	,7,9, ⁻	11,15	-		-	M								6M
7	2)	Drow the sireu	t of	11 / fl:,	o flor		NIT-		acto			loin	ita	000	rotion		GM
7.	a) b)	Draw the circuit					•		•		•			•			6M 8M
	b)	Convert S-R fli	h not	Jinto	JU-	прп	ор. L			expie	ann u		gic	ulaç	jiani.		OIVI
8.	a)	Design and im	nlom	ont 3	2_hit i	innle		_		. I₋k	flin f		Dr	t wc	no etc	oto	
0.	a)	diagram, logic	•			•••					•	•			10 312		8M
	b)	What are the s	-				-	-					len	tial o	circuit	s?	6M
			-			U	INIT-	-V	-								
9.	a)	Differentiate M	ealy	mac	hine	and	Моо	re Ma	achin	e wit	h an	exa	mp	le			6M
	b)	What are critic						es ir	n asy	/nchr	onoi	us ci	ircu	uits?	How	to avo	
		races? Illustrat	e wit	h on	e exa	ampl	e.										8M
	-				~	_	_	OR									
10.	,	Explain the bas			•									-	-		6M
	b)	Explain any on of a incomplete				•						the s	set	of e	equiva	llent sta	te 8M
			in 2h		eu II	aun	vv ک انا *	**		mple	•						OW