Наш	Tick	et Number :							
Hall Ticket Number : R-14 Code: 4G343 R-14									
Code	3. 40	II B.Tech. II Semester Supplementary Examinations May 2018							
		Analog Communication							
Mc	Λ yr	(Electronics and Communication Engineering) Narks: 70 Time: 3	Hours						
7010		swer all five units by choosing one question from each unit (5 x 14 = 70 Mark							
		******** UNIT–I							
1. a) Describe AM wave by considering single modulating signal. Draw its tin									
		and frequency domain representation.	7M						
	b)	What is the effect of phase and frequency error in demodulation of SSB wave using synchronous detector. Explain in detail.	7M						
		OR							
2.	a)	Explain the generation of DSBSC wave using balanced modulator	6M						
	b)	Derive the canonical expression for Vestigial Side Band (VSB) wave. How it is used in TV broadcast?	8M						
3.	a)	What is a PLL? Assuming the linear model, explain with expressions, how							
	b)	PLL can be used as FM detector. Explain the working of a balanced frequency discriminator with the help of	6M						
	2)	circuit diagram.	8M						
		OR							
4.	a)	Explain in detail about NBFM and WBFM. Derive the expression for bandwidth of wideband FM.	9M						
	b)		5101						
	,	$V(t) = 10\sin(16f \times 10^6 t) + 20\sin(2f \times 10^3 t)$ volts. Determine the modulation							
		index, modulating frequency, frequency deviation, carrier frequency and the	C N A						
		power of the FM signal. UNIT-III	5M						
5.	a)	Discuss the noise performance of AM system using envelop detection?	8M						
	b)	What is FM threshold effect? How to achieve threshold reduction in FM							
		system? OR	6M						
6.	a)	What is the need of pre-emphasis and de-emphasis in FM transmission?							
		Sketch their frequency response. How are these of avail in FM systems?	7M						
	b)	Define Figure of Merit (FoM). Derive the expression for FoM of SSB-SC system.	7M						
		UNIT-IV	7 1 1 1						
7.	a)	Draw the block diagram of a super heterodyne receiver and explain its							
	۲	operation? What are the advantages of this receiver?	7M						
	b)	What are image frequency and its rejection? In a broadcast super heterodyne receiver having no RF amplifier, the loaded Q of the antenna							
		coupling circuit is 100. If the IF frequency is 455kHz, determine the image							
		frequency and its rejection ratio for tuning at (a) 1.1kHz & (b) 25kHz. OR	7M						
8.	a)	What is simple Automatic Gain Control (AGC)? What are its functions? What							
		is delayed AGC and what are its merits compared to simple AGC?	8M						
	b)	Discuss the considerations in the choice of IF and the design of IF stage.	6M						
9.	a)	UNIT-V Explain the concept of TDM and FDM clearly.	10M						
_	b)	Compare TDM and FDM.	4M						
	,	OR							
10.	a) b)	Compare PAM, PWM and PPM. Explain how PPM and PWM signals are generated from PAM signals. Also,	4M						
	5)	explain how they are detected.	10M						

	Н	all Ticket Number :										
		de: 4G245										
	II B.Tech. II Semester Supplementary Examinations May 2018											
	Electrical Technology											
	(Electronics and Communication Engineering)											
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)											
		UNIT–I										
1.												
	b)	The Z-parameters of a two-port network are $Z_{11}=10$, $Z_{22}=20$, $Z_{12}=Z_{21}=5$. Find the ABCD parameters.	6M									
		OR	oivi									
2.	a)	What is the use of <i>h</i> -parameters? Derive equations to determine these parameters. State the										
		condition for symmetry and Reciprocity in a two port network in terms of "h" parameters.	10M									
	b)	Obtain "Z" parameters in terms of "Y" parameters for a two port network.	4M									
0	,											
3.	a) b)	What are the different types of transients?	4M									
	b)	A 20 ohm resistor, a 0.01 h inductor and a 100 μ F capacitor are connected in series. A d.c. voltage of 100 V is suddenly applied to the circuit. Obtain the equation showing how the current										
		through the circuit is varies with time. Find the maximum current and the time at which it										
		occurs?	10M									
		OR										
4.	a)	Explain in detail about the transients in R-C series circuit with DC Excitation?	8M									
	b)	A circuit of resistance 10 ohms and the inductance of 0.1 H in series has a direct voltage of 200 V suddenly applied to it. Find the voltage drop across inductance at the instant of switching										
		on and at 0.01 second?	6M									
		UNIT–III										
5.	a)	Define filter and write short notes on low-pass filter?	6M									
	b)	A filter is required to pass all frequencies above 25 kHz and to have a nominal impedance of										
		600 . Design (i) a high-pass T section filter and (ii) a high-pass - section filter to meet these requirements?	8M									
		OR	OIVI									
6.	a)	What is attenuator? Design a T-section symmetrical attenuator to provide a voltage attenuation										
		of 15 dB and having a characteristic impedance of 500 ?	6M									
	b)	Derive the design equations for Lattice type attenuator?	8M									
7	-)	UNIT-IV										
7.	a) b)	Derive the EMF Equation of a DC Generator?	4M									
	b)	Explain how the speed of a DC shunt motor is controlled through flux and armature control method?	10M									
		OR										
8.	a)	Write the applications of different types of DC motors?	4M									
	b)	Draw and explain magnetization and load characteristics of DC shunt generator?	10M									
•	,											
9.	a) b)	Explain OC and SC tests of a 1-phase transformer with a neat circuit diagram? A 11000/400 V distribution transformer takes a no load primary current of 1 A at a power factor	10M									
	b)	of 0.24 lagging. Find: (i) Core loss current. (ii) Magnetizing current. (iii) Iron loss.	4M									
		OR										
10.	a)	Explain the construction of hybrid stepper motor with diagram?	10M									
	b)	Write the advantages of capacitor start and run single phase induction	4M									

	Hall Ticket Number : R-14
C	Code: 4G344 II B.Tech. II Semester Supplementary Examinations May 2018
	Field Theory and Transmission Lines
	(Electronics and Communication Engineering)
	Max. Marks: 70 Time: 3 Hours
	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)
а	
b	
	spherical surface r=0.8 bounded by 0.1 $< < 0.3$, 0< <2
	OR
а	
b) A potential field is given as V=100e ^{-5x} sin3y cos4z Volts. Let the point P(0.1,pi/12, pi/24) be located at a conductor free space boundary. At point P, find i) E ii) D iii) _s
	UNIT-II
а	
	the necessary mathematical equations.
b	
	 i) Spherical shell of radius of 10 cm ii) Hemispherical shell of radius of 20 cm
	OR
а	
	field intensity at a point 20 cm away from the disc along the axis.
b) Distinguish between the conduction and convection currents. Calculate the relaxation time
	for Brass material, having conductivity of 1.1x10 ⁷ mho/m at 10 MHz.
а	
	same & opposite directions, explain with necessary derivations
b	
	variation with radial distance.
а	OR) What is the force experienced by a charge in a magnetic field? Obtain Lorents force
0	equation.
b	
~	
а	
	impedance of free space.
b	
	dielectric
а	OR) Derive the expressions for reflection and transmission coefficients, when a uniform plane
0	wave incidents normally on surface of a perfect dielectric
b	
	electric field. The material has a dielectric constant 4. How much power penetrates the
	material slab?
	UNIT-V
a	
b	
	on the line is 2.4x108 m/s find L & C. Let ZL be represented by an inductance of 0.6µH in series with a 100 resistance. Find reflection coefficient and VSWR.
	OR
а	
b) Explain how to find the length and the distance of double stub in transmission line matching

R-14II B. Tech. II Semester Supplementary Examinations May 2018Mathematics-III(Common to EEE and ECE)Max. Marks: 70Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)***********************************	Hall Ticket Number :									-							
If B.Tech. II Semester Supplementary Examinations May 2018 Mathematics-III (Common to EEE and ECE) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) Evaluate $\int_{0}^{1} \frac{1}{(\log \frac{1}{2})^{-1}} \frac{1}{(\log \frac{1}$		P-1/															
(Common to EEE and ECE) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) UNIT-1 1. a) Evaluate $\int_{0}^{1} \left(\frac{1}{2m^{2} + 2} \right)^{-1} \frac{1}{2m^{2} + 2m^{2}} \frac{1}{2m^{2} + 2$											_						
Max. Marks: 70 Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) UNIT-I 1. a) Evaluate $\int_{1}^{1} (t_{0,0} \frac{1}{2})^{} d_{2} \cdot d_{2} \cdot d_{2} \cdot d_{2}$ b) Separate $\frac{c}{c} (\frac{c}{c} \frac{1}{2})^{} d_{2} \cdot d_{2} \cdot d_{2} \cdot d_{2}$ b) Separate $\frac{c}{c} (\frac{c}{c} \frac{1}{2})^{} d_{2} \cdot d_{2} \cdot d_{2} \cdot d_{2}$ b) If $\frac{c}{c} \frac{1}{c} 1$																	
Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) UNIT-I 1. a) Evaluate $\int_{0}^{1} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	Max																
1. a) Evaluate $\int_{0}^{1} (t_{10} t_{2})^{-1} d_{2} t_{10}^{-1} d_{2}^{-1} (t_{2} t_{2})^{-1} (t_{2} t_{2}$	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)																
Evaluate $\int_{0}^{1} (\log 2) = d_{2}$, $(n = 0)$. OR 2. a) Prove that $\int_{0}^{1} \frac{1}{\sqrt{1+n}} d_{2}$ and the R b) $\int_{0}^{1} \frac{1}{\sqrt{1+n}} d_{2}$ and \int	1.	a)	Evoluete (1		1			**	UNI	-							
C a Prove that $\int_{0}^{1} \frac{1}{\sqrt{1-14}} \frac{1}{\sqrt{1-14}$																	
b) If $\frac{\log \log \tan x \int_{1}^{1} \frac{\log x \int_{1}^{1} \frac{\log x \int_{1}^{1} \frac{\log x}{\log x} \int_{1}^{1} \frac{\log x}$		D)	Separate 1	(10g 7-1 (-	⇒∫ ≈ + 4;	ע <i>ש</i> , יחו כע		al and	ima OR	gına	ry pa	arts.					8M
3. a) Show that the function $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2}$ b) Find the analytic function whose real part is $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2}$ c) Find the analytic function whose real part is $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2}$ b) Show that $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2}$ b) Show that $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2}$ b) Show that $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2}$ c) Show that $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2}$ c) Show that $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2}$ b) Using cauchy's integral formula, evaluate $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2}$ c) Find the Taylor's expansion of $\frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = \frac{ \mathbf{r} ^2}{ \mathbf{r} ^2} = $	2.																7M
 3. a) Show that the function for the interval in the origin even though CR equations are satisfied theorem. b) Find the analytic function whose real part is contained to the origin even though CR equations are satisfied theorem. c) Find the analytic function whose real part is contained to the origin even though CR equations are satisfied theorem. d) Find the analytic function whose real part is contained to the origin even though CR equations are satisfied theorem. d) Find the analytic function whose real part is contained to the origin even though CR equations are satisfied theorem. d) Find the analytic function (for event the origin event the interval event to the origin event e		b)	$\int_{tan(\theta + i\varphi)}^{tove that}$	$\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} = 0$	$\int_{a}^{\frac{1}{4}} dx$	x sho ^W	r that	e^{dx}	$=\frac{n}{4\sqrt{n}}$ $(n+)$	$\frac{1}{2}$ $\frac{\pi}{2}$	and 4	$p = \frac{1}{2}$	$\{log$	$tan\left(\frac{\pi}{4}\right)$	$\frac{\alpha}{2}$		7M
3. a) Show that the function Description of analytic at the origin even though CR equations are satisfied trefeor. b) Find the analytic function whose real part is Description CR 4. a) Find the analytic function C C C C C C C C C C						214	that	0 =		 11							
b) Find the analytic function whose real part is $\frac{1}{(2+1)^2} = \frac{1}{(2+1)^2} = \frac{1}{(2+1)^$	3.	a)		ne fu	nctic	n			UNI	not a	naly	tic at	the	origin e	ven tho	ugh	
Image: Non-Section of the sector of the s		h)								4 in							<i>i</i> IVI
4. a) Find the analytic function $\frac{1}{(x+x)^2} = \frac{1}{(x+x)^2} \frac{1}{(x$		0)	Find the ana	IYTIC	Tunc	tion	wnos	e rea			su cosh2y	$\frac{12x}{1-\cos^2}$	x				7M
b) Show that $ v + $	4.	a)	Find the ana	lytic	func	tion	whos	e res — 14 -		tis ;	- 12 -	Cons		4	(+ 2 2)		7M
5. a) Evaluate $\int_{0}^{1} + (\frac{1}{3})^{2} dx_{s}$ along the line $\frac{1}{y_{s} - x}$ 7M b) Using \int_{Cau} chy's integral formula, evaluate $\oint_{C} \frac{\sin \pi x^{2} + \cos \pi x^{2}}{(x-1)(x-2)} dx_{s}$ where C is the $rightarrow response of r(x) = \frac{1}{x}$ 7M 6. a) Find the Taylor's expansion of $r(x) = \frac{1}{x}$ in the region $3 < _{x+2}^{t} < 5$ 7M b) Find the Laurents series expansion of $\frac{1}{(x-1)(x-3)(x+2)}$ in the region $3 < _{x+2}^{t} < 5$ 7M 7. a) Find the residues of $\frac{1}{r(x)} = \frac{x^{2}}{(x-1)(x-3)(x+2)}$ in the region $3 < _{x+2}^{t} < 5$ 7M b) By integrating around a unit circle, Evaluate $\int_{0}^{1} \frac{1}{y_{s}} \frac{1}{y_$		b)	Show that		func	tion	$\binom{z}{z^2}$	harr	nonio) .				-	,		7M
b) Using c_{au} chy's integral formula, evaluate $\oint_{C} \frac{c_{au} c_{x} x^{2} + c_{ost} x^{2}}{(x-1)(x-2)} dx$, where C is the circle $ x = 3$ matrix																	
b) Using Cauchy's integral formula, evaluate $\oint_{C} \frac{x \cos x^2 + \cos x^2}{(x-1)(x-2)} dx$, where C is the circle $ x = 3$ (M) 6. a) Find the Taylor's expansion of $\frac{ x }{r(x) = \frac{1}{(x+1)^2}} db_1^{2} ut the point x = -\frac{1}{(x+1)^2}}$ (M) b) Find the Laurents series expansion of $\frac{ x }{(x-1)(x-2)}$ in the region $3 < x + 2 < 5$ (M) 1. The the Laurents series expansion of $\frac{ x }{(x-1)(x-2)}$ is the region $3 < x + 2 < 5$ (M) 1. The the residues of $\frac{ x }{r(x)} = \frac{ x }{(x-1)(x-1)(x-3)}$ at its poles. (M) b) By integrating around a unit circle, Evaluate $\int_{0}^{ x } \frac{ x }{(x-1)(x-3)} dt$ is poles. (M) 1. B) Determine the poles of the function $\frac{ x }{r(x)} = \frac{ x }{(x-1)^2(x+2)} dt$ the residue at each pole. (M) 1. Discuss the transformation which maps the points $\frac{ x }{x-1} = \frac{1}{(x-1)^2(x+2)} dt$ and the residue at each pole. (M) 1. A) Discuss the transformation $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ and $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ and $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation which maps the points $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation which maps the points $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation which maps the points $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation which maps the points $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation which maps the points $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M) 1. A) Discuss the transformation $\frac{ x }{x-1} = \frac{ x }{x-1} dt$ (M)	5.	a)	Evaluate ∫	్ '(క్రై	dz,	along	the	line	VNI_x V = 2								7M
6. a) Find the Taylor's expansion of $r(x) = \frac{ x ^2}{(x+1)^2} ab^2 ut the point x = -\epsilon$ 7M b) Find the Laurents series expansion of $\frac{ x ^2}{(x-1)(x-3)}$ in the region $3 < \frac{\epsilon}{x} + x < 5$ 7M 7. a) Find the residues of $r(x) = \frac{ x ^2}{(x-1)(x-3)}$ at its poles. 7M b) By integrating around a unit circle, Evaluate $\int_{0}^{ x } \frac{ x ^2}{(x-1)(x-3)} x $		b) Using Cauchy's integral formula, evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} \frac{e}{dz}$, where C is the								714							
b) Find the Laurents series expansion of $\frac{e^{-\frac{1}{(x+1)^2}e^{-\frac{1}{(x+$		OR															
b) Find the Laurents series expansion of $\frac{2^{n}}{(x-1)^{2}(x-3)^{n}}$ in the region $3 < _{x+2}^{n} < 5$ 7M UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-IV UNIT-V Second at its poles. 7M b By integrating around a unit circle, Evaluate $\int_{0}^{1} \frac{p}{2x+2} \frac{p}{2x+30} dx \frac{p}{2x+30} dx \frac{p}{2x+30} \frac{p}{2x+30} dx \frac{p}{$	6.	a)	Find the Tay	lor's	expa	ansic	on of	f(z)	$\frac{\mathbf{PR}}{(z+z)}$	$\frac{1}{1}$ a	ьʔut	the p	oint	z = -i			7M
7. a) Find the residues of $r(x) = (x-1)^4(x-1)(x-3)$ at its poles. b) By integrating around a unit circle, Evaluate $\int_0^{x} \frac{x^2}{x^4 \cos \theta} d\theta$ 7M OR 8. a) State and prove Argument principle. b) Determine the poles of the function $\frac{x^2}{r(x)} = \frac{x^2}{(x-1)^2(x+2)}$ and the residue at each pole. Determine the bilinear transformation which maps the points $\frac{x}{x} = \frac{x^4}{x^4 - 1}$ onto $\frac{x}{x} = \frac{x^4}{x^4 - 1}$ 7M Discuss the transformation $f(z) = z \frac{\sin \theta}{x^4 - 1}$ points $x = constant$ and $y = constant$ into two families of confocal central conics. Discuss the transformation which maps the points $x = \frac{1}{x}, \frac{1}{x} = 0$ onto $w = 1, -\frac{1}{x} = 1$ 7M b) Find the bilinear transformation which maps the points $x = \frac{1}{x}, \frac{1}{x} = 0$ onto $w = 1, -\frac{1}{x} = 1$ 7M									- (z+	1)2 **	~~~				< 5		7M
b) By integrating around a unit circle, Evaluate $\int_{0}^{\infty} \frac{1}{e^{-4cos\theta}} \frac{1}{e^{-4cos$						-				-IV	-2)		-	2 -	+ 2		7 101
b) By integrating around a unit circle, Evaluate $\int_{0}^{2\pi} \frac{e^{2x/3\theta}}{e^{-4x\cos\theta} dx\theta}$ 7M OR 8. a) State and prove Argument principle. b) Determine the poles of the function $\frac{e^{2\pi}}{e^{2\pi}(x-1)^2(x+2)}$ and the residue at each pole. OR 9. a) Find the bilinear transformation which maps the points $\frac{e^{2\pi}}{x-1} \frac{e^{2\pi}}{e^{2\pi}(x-1)}$ 7M b) Discuss the transformation $f(z) = z_{2,r}^{\frac{2\pi}{2}}$ maps the families of lines $x = constant$ and $y = constant$ into two families of confocal central conics. 7M OR 10. a) Discuss the transformation which maps the points $x = \frac{1}{e^{2\pi}} \frac{e^{2\pi}}{e^{2\pi}} \frac{e^{2\pi}}{e^{2\pi}$	7.	a)	Find the resi	dues	s of]	s exp	a 	Z ³		at	its po	oles.					7M
ORN8. a) State and prove Argument principle.7Mb) Determine the poles of the function $f(x) = (x-1)^2(x+2)^2$ and the residue at each pole.7MUNIT-V9. a) Find the bilinear transformation which maps the points $f(x) = 1$ and $f(x-1)$ and $f(x) = 1$.7Mb) Discuss the transformation $f(z) = z_{x+1}^{\text{transmaps}}$ apps the families of lines $x = constant$ and $y = constant$ into two families of confocal central conics.7M10. a) Discuss the transformation which maps the points $f(x) = x + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$		b)															
b) Determine the poles of the function $\frac{e}{f(z)} = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at each pole. 7M UNIT-V 9. a) Find the bilinear transformation which maps the points $\frac{e}{x-1}, \frac{e}{t-1}$ onto $\frac{e}{w-t}, \frac{e}{v-t}$ 7M b) Discuss the transformation $f(z) = z_{x,r}^{\text{then}}$ naps the families of lines $x = \text{constant}$ and $y = \text{constant}$ into two families of confocal central conics. 7M 10. a) Discuss the transformation $\frac{e}{w-t}$ $\frac{e}{v-t}$ \frac{e}			Dy integration	gui	o un ru	a ai		0.0, 1			0	-4 <i>cos0</i>	d0				7 111
 9. a) Find the bilinear transformation which maps the points at each role. 9. b) Discuss the transformation f(z) = z^{hap} naps the families of lines x = constant and y = constant into two families of confocal central conics. 10. a) Discuss the transformation transformation which maps the points at each role. 10. a) Discuss the transformation which maps the points at each role. 10. b) Find the bilinear transformation which maps the points at each role. 10. a) Discuss the transformation which maps the points at each role. 10. b) Find the bilinear transformation which maps the points at each role. 	8.	a)			-		•	-									7M
 9. a) Find the bilinear transformation which maps the points at each role. 9. b) Discuss the transformation f(z) = z^{hap} naps the families of lines x = constant and y = constant into two families of confocal central conics. 10. a) Discuss the transformation transformation which maps the points at each role. 10. a) Discuss the transformation which maps the points at each role. 10. b) Find the bilinear transformation which maps the points at each role. 10. a) Discuss the transformation which maps the points at each role. 10. b) Find the bilinear transformation which maps the points at each role. 		b)	Determine th	e pol	les o	f the	funct	ion e	(z) =	$\overline{(z-1)}$	$\frac{z^2}{2(z+2)^2(z+2)}$	anc	the	residue a	at each p	oole.	7M
 b) Discuss the transformation f(z) = z^{hap} naps the families of lines x = constant and y = constant into two families of confocal central conics. 10. a) Discuss the transformation the second se									UNIT	-V							
and y = constant into two families of confocal central conics. 7M OR 10. a) Discuss the transformation which maps the points $x = \frac{1}{2}, \frac{1}{4}, \frac{1}$	9.																7M
OR10. a) Discuss the transformationIn the set confection7Mb) Find the bilinear transformation which maps the pointsa - b, a -		U)												mes x	= cons	lant	7M
b) Find the bilinear transformation which maps the points $x = \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, $									OR			2.5					
	10.													a 1	1		
		D)	rina the biline	ear tra	ansto	rmati	on w			ine p	oints	*	c' 1. ~	, onto "	,,	1	<i>i</i> M

Hall Ticket Number :											
Code: 4G341											
II B.Tech. II Semester Supplementary Examinations May 2018											
		Random Variables and Random Processes									
		(Electronics & Communication Engineering)									
		Marks: 70 Time: 3 He									
Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) *****											
UNIT–I											
1.	,										
i) Probability ii) Statistically Independent iii) Bernoulli Trail											
	b)										
		without replacement. What is the probability that the first ball is white and secon is red	nd ball 8M								
		OR	OIVI								
2.	a)		7M								
۷.	b)										
	0)	write their properties.	7M								
		UNIT-II									
3.	a)	Explain expected value of a random variable and a function of a random variable.	6M								
	b)	Prove that the variance of exponentially distributed random variable 'X' is b ² .	8M								
		OR									
4.	a)	$f_{X}(x) = \begin{cases} \overline{b} e^{-(x-a)/b} & x > a \\ 0 & x < a \end{cases}$ Find variance and the coefficients of skewness.									
		$f_{x(x)} = \int_{b}^{b} e^{-(x-a)/b}$ $x > a$ Find variance and the coefficients of skewness.									
		random	10M								
	b)	Write about Gaussian random variable.	4M								
_	,		-14								
5.	a)		7M								
	b)	$E_{1,2,i+1} \approx (E_{1,2,i+1} = \Delta_{i+1} \approx (E_{1,2,i+1})$	7M								
~	-)	OR Otata and Drave Constral Lineit The course	4014								
6.	a) b)		10M								
	b)	F i d a constant b (in terms of a) so that the function $a_{a} = b_{a} = b_{$									
		$\begin{aligned} S_{i_1} &= \text{and } F_{i_0v} \\ F_{i_1} &= d \text{ a const}_{an} t \text{ b (in terms of } a) \text{ so that the function} \\ f_{i_1} &= d \text{ a const}_{an} t \text{ b (in terms of } a) \text{ so that the function} \\ f_{i_2} &= f_{i_1} \\ f_{i_2} &= f_{i_1} \\ f_{i_2} &= f_{i_1} \\ 0 \\ \hline \hline \\ 0 \\ \hline \\ 0 \\ \hline \hline \hline \hline$	4M								
7.	a)	Explain First-order, second order and wide-sense stationarity.	7M								
	b)	Define cross correlation function. State and prove its properties.	7M								
		OR									
8.	a)	Discuss Time averages and Ergodicity.	7M								
	b)										
		are uncorrelated but converse is true for joint Gaussian processes.	7M								
~	-)		014								
9.	a) b)		6M								
	b)	Explain relationship between cross correlation function and cross power spectrue OR	m. 8M								
10.	2)		6M								
10.	a) b)										
	5)	\square wiss show it the table of the state of	8M								
		***	0101								

Hall Ticket Number : R-14 Code: 4G342 R-14									
Il B.Tech. II Semester Supplementary Examinations May 2018									
Switching Theory and Logic Design									
(Electronics and Communication Engineering)									
Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********									
UNIT–I									
1. a) i) Convert 2598.675 ₁₀ to Hexadecimal ii) Convert 3A9E.B0D ₁₆ to binary									
	δM								
b) i) Given the 8 bit data word 10111001, generate the 12 bit hamming code.									
ii) Mention the properties of XOR gate. 8 OR	BM								
2. a) Obtain the duals of the following functions									
i) $A'B + A'BC' + A'BCD + A'BC'D'E$									
	BM								
b) Simplify the following expressions to minimum number of literals									
i) $x'y + xy + xz' + xy'z'$									
ii) $(A + B)(A' + C)(B' + D)(CD')$ 6	δM								
UNIT–II 3. a) i. Implement EX-OR gate using NAND gates									
ii. Minimize the expression $Y = AB'C + A'B'C + A'BC + AB'C' + A'B'C' using K-$									
map. 6	δM								
 b) Minimize the following expressions using K-Map and implement with logic gates. 									
i) $f(P,Q,R,S) = m(0, 1, 4, 8, 9, 10) + d(2, 11)$									
	BM								
OR 4. Cimertife the following Declary companying Tabular mothed									
4. Simplify the following Boolean expression using Tabular method F(A,B,C,D) = m(0, 2, 3, 6, 7, 8, 10, 12, 13) 14	IN/								
$(\Lambda, D, O, D) = (\Pi(0, 2, 3, 0, 7, 0, 10, 12, 13))$	rivi								
UNIT-III									
5. a) Draw the truth table and logic diagram of full adder. Implement a 4 bit ripple									
adder using Full adders. 8	BM								
b) Implement the following logic function using 8 X 1 MUX									
	δM								
OR									
	BM								
 b) Implement the following two Boolean functions with a PLA i) F1(A, B, C) = m(0, 1, 2, 4) 									
	δM								
Page 1 of 2	-								

						Coue. 4034						
7.	a)	Convert S-R Fli	o Flop to J-K F	UNIT-IV			6M					
	b)		•	een synchronou	and acumatra	nous countars?						
	D)			•	•		8M					
	Design a MOD-6 Asynchronous counter using T Flip Flops.											
				OR								
8.	a)	Design a MOD-6 synchronous counter using JK flip flops.										
	b)	b) Draw the 4 bit Ring Counter and Johnson Counter using D- Flip-flops ar										
		explain the diffe	rence betweer	n them state diag	ram.		6M					
9.												
	b)											
	2)	chart for mod-6					8M					
				OR								
10.	a)	Differentiate Me	alv Machine a	nd Moore Machir	ie.		4M					
-			•			od mochino in						
	b)	•	•	on and a corre	sponding reduc	eu machine m						
		standard form a	nd also explai	n the procedure.		7						
			PS	NS	, Z							
X =0 X = 1 A B,0 E,0												
									B E,0 D,0			
			С	D,1	A,0							
			D	C,1	E,0							

B,0

D,0

Е

10M