\square

Code: 4G344

II B.Tech. II Semester Supplementary Examinations May / June 2022

Field Theory and Transmission Lines

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I

1. a) Find the divergence and curl of vector field if $A=e^{x y} a_{x}+\sin x y a_{y}+\cos ^{2} x z a_{z}$ 7M
b) Define Del operator ∇ or Del (function). Explain the different operations using Del
b) Define Del operator ∇ or Del (function). Explain the different operations using Del operator. operator. 7M 7M
OR
OR
2. a) Derive the expression for second Maxwell's equation and explain how electric field
3. a) Derive the expression for second Maxwell's equation and explain how electric field intensity (E) relates with Electric potential (V).. intensity (E) relates with Electric potential (V).. 7M 7M
b) Define Electric flux Density? Give the Relation between D \& E?
b) Define Electric flux Density? Give the Relation between D \& E? 7M 7M
UNIT-II
UNIT-II
4. a) Discuss about linear, isotropic, homogeneous mediums.
5. a) Discuss about linear, isotropic, homogeneous mediums. 7M 7M
b) Define conductor ?And explain its properties with neat sketch
b) Define conductor ?And explain its properties with neat sketch 7M 7M
OR
OR
6. a) The capacitance of the conductor formed by the two parallel metal sheets each $100 \mathrm{~cm}^{2}$,
7. a) The capacitance of the conductor formed by the two parallel metal sheets each $100 \mathrm{~cm}^{2}$, in area separated by a dielectric 2 mm thick is $2 \times 10^{-10} \mu \mathrm{f}$, a potential of 20 KV is applied to in area separated by a dielectric 2 mm thick is $2 \times 10^{-10} \mu \mathrm{f}$, a potential of 20 KV is applied to it. find i) electric flux ii) potential gradient in kV / m iii) the relative permittivity of materials it. find i) electric flux ii) potential gradient in kV / m iii) the relative permittivity of materials iv) Electric flux Density. iv) Electric flux Density. 7M 7M
b) Derive the expression for a capacitance of coaxial capacitor with neat schematic.
b) Derive the expression for a capacitance of coaxial capacitor with neat schematic. 7M 7M
UNIT-III
UNIT-III
8. a) Write a technical note on Faraday's law of Electro Magnetic induction?
9. a) Write a technical note on Faraday's law of Electro Magnetic induction? 7M 7M
b) Give the details about magnetic vector and scalar potential?
b) Give the details about magnetic vector and scalar potential? 7M 7M
OR
OR
10. a) What will be the nature of force between the two current elements if the currents are in
11. a) What will be the nature of force between the two current elements if the currents are in the same \& opposite directions, explain with necessary derivations? the same \& opposite directions, explain with necessary derivations? 7M 7M
b) Discuss about transformer and motional emf's using Faraday's law.
b) Discuss about transformer and motional emf's using Faraday's law. 7M 7M
UNIT-IV
UNIT-IV
12. a) Analyze the plane waves in lossless dielectrics
13. a) Analyze the plane waves in lossless dielectrics 7M
b) Derive the wave equations for free space.
b) Derive the wave equations for free space. 7M 7M
OR
OR
14. Derive equations for uniform plane waves in lossy dielectrics
15. Derive equations for uniform plane waves in lossy dielectrics 14M 14M
UNIT-V
UNIT-V
16. a) Explain primary and secondary constants of transmission line with relevant expressions.
17. a) Explain primary and secondary constants of transmission line with relevant expressions. 7M
b) A generator of volt, $1,000 \mathrm{~Hz}$,supplies power to $1,000 \mathrm{Km}$,long open wire line terminated in
b) A generator of volt, $1,000 \mathrm{~Hz}$,supplies power to $1,000 \mathrm{Km}$,long open wire line terminated in Z_{0} (characteristics impedance) and having following parameters : $\mathrm{R}=10.40 \mathrm{hm}$'s., Z_{0} (characteristics impedance) and having following parameters : $\mathrm{R}=10.40 \mathrm{hm}$'s., $\mathrm{L}=0.0037$ henry, $\mathrm{G}=0.8$ microohms, $\mathrm{C}=0.00835$ microfarad's. calculate Z_{0} and P . $\mathrm{L}=0.0037$ henry, $\mathrm{G}=0.8$ microohms, $\mathrm{C}=0.00835$ microfarad's. calculate Z_{0} and P 7M 7M
OR
OR
18. a) What is line distortion? Derive the condition for distortion less line?
19. a) What is line distortion? Derive the condition for distortion less line? 7M 7M
b) Determine and Derive condition for minimum attenuation.
b) Determine and Derive condition for minimum attenuation. 7M 7M
Marks
