Hall Ticket Number : R-14

Code: 4G245

5.

II B.Tech. II Semester Supplementary Examinations August 2021

Electrical Technology

(Electronics and Communication Engineering)

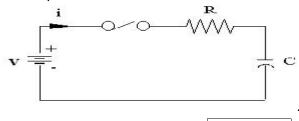
Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70 \text{ Marks}$)

UNIT-I

1. The impedance parameters of a two port network are Z_{11} =6 ; Z_{12} = Z_{21} =3 ; Z_{22} =4 . Compute the Y parameters and ABCD parameters and write the Describing equations.

OR


2. Obtain the Conditions for Reciprocity & Symmetry for Z and Y parameters.

UNIT-II

3. Explain about transient response of series RL circuit using Laplace Transform Approach

OR

4. A series RC circuit with R=10 and C= 0.1F has a constant voltage V=20 V applied at t=0 as below .Determine the current I the voltage across the resistor and capacitor

Design constant k high pass filter with characteristic impedance of 600 ohms and

to pass frequency above 20kHz.

OR

6. Relate the characteristics of pass band and stop band filters, explain them.

UNIT-IV

UNIT-III

- 7. a) Write the applications of different types of DC motors?
 - b) Draw and explain magnetization and load characteristics of DC shunt generator?

OR

8. A 4 pole lap connected DC machine has a flux per pole of 0.05weber .There are 384 conductors rotating with a speed of 800 rpm in the armature, calculate the EMF in the armature.

UNIT-V

9. Explain the Constructional details of transformer with necessary figures.

OR

10. Explain how the efficiency of a transformer may be estimated from open circuit and short circuit tests.

	Hall Ticket Number: R-14										
C	Gode: 4G344										
	Il B.Tech. Il Semester Supplementary Examinations August 2021										
	Field Theory and Transmission Lines (Electronics and Communication Engineering)										
٨	(Electronics and Communication Engineering) Nax. Marks: 70 Time: 3 Ho	urs									
	Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Mark										

,	UNIT-I	4014									
a)	Define co-ordinate system? Explain different types of co-ordinate systems.	10M 4M									
b)	,										
a)	OR Define Electric potential? Derive the expression for Electric potential.	7M									
b)	Determine the Divergence and curl vector field as T=10r sin ₂ 2cos .	7M									
D)	UNIT-II	7 101									
a)	Write and explain different kinds of current density's with suitable diagrams and expressions.	7M									
b)	In a cylindrical conductor of radius 2mm,the current density varies with distance from the										
-,	axis according to $J = 10^3 e^{-400r} A/m^2$. Find the total current I.	7M									
	OR										
a)	Derive the expressions for resistance of conductor with uniform cross section	7M									
b)	,										
	i) A hemispherical shell of radius 20cm,0< < /2, 0< <2										
	ii) A spherical shell of radius 10cm	7M									
-\	UNIT-III	7M									
a)	Derive the force equation due to current element.										
b)	Write Maxwell's equations for static EM fields.	7M									
	State and prove Biot savart's law ,using Biot savart's law derive an expression for magnetic										
	field strength H due to a finite &Infinite filamentary conductor carrying a current I and placed										
	along Z-axis at appoint P on Y-axis .hence deduce the magnetic field strength for the length										
	of the conductor extending from - + .	14M									
,	UNIT-IV										
a)	Define the wave? List out the different medias and Give the properties of different medias. Write the E&H equations in those medias.	7M									
b)	A uniform plane wave propagating in medium has $E=2 e^{-z} \sin (10^8 t - z) a_v V/m$. If the	<i>I</i> IVI									
D)	medium is characterized by ϵ_r =1, μ_r = 20 and =3 S/m. Find , and H.	7M									
	OR										
a)	Derive the relation between E& H in a uniform plane wave. find the value of intrinsic										
	impedance of free space .	7M									
b)	In free space H= 0.1cos $(2x10^8 - z)$ a_y A/m , calculate i) , and T ii) the time t_1 takes by										
	the wave to travel a distance of /8.	7M									
- \	UNIT-V Define transmission line? And explain different types of transmission line with next electables	01.4									
a)	Define transmission line? And explain different types of transmission line with neat sketches.	8M									
b)	Discuss about infinite line concept. OR	6M									
a)	Derive the expression for the input impedance of a transmission line of length.	7M									
u,											

10.

the first V_{min} is located at 6 cm from the load .calculate the reflection coefficient and Z_{R}

7M

Hall Ticket Number :													_		_
Co	Code: 4GC41									R-14					
II B.Tech. II Semester Supplementary Examinations August 2021															
Mathematics-III															
(Common to EEE & ECE) Max. Marks: 70 Time: 3 Hours															
Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Marks)															
4414444															
					U	NIT-	- I								
a)	Symmetry of Beta function B(m, n)=B(n, m)											7M			
b)	Evaluate $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^5}} dx$ in terms of B function												7M		
OR															
a)	Find real and imagin			cot	Z.										7M
b)	Find all the roots of	sın z	= 2												7M
						NIT-		,				()			
	Determine P such	that t	the f	unct	ion f	r(z) =	$=\frac{1}{2}$ lo	$\log(x^2)$	$+y^2$	+i7	Tan ⁻¹	$\left(\frac{px}{y}\right)$	b	e an analytic	
	Determine P such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \arctan(\frac{px}{y})$ be an analytic function												14M		
	OR														
	Find an analytic fund	ction	who	se re	al pa	rt is	e^{-x}	sin y	y - y	cos y]				14M
	c (, ,	\	(2			NIT-									
	Evaluate $\int_{c} (y^2 + 2xy) dx + (x^2 - 2xy) dy$ where c is the boundary of the region by											e region by			
	$y = x^2$ and $x = y^2$														14M
	Evnand I by T	ov do n	·'o oo	rico	ahau4	OR									
	Expand $Log z$ by T	ayıor	S SE	eries											14M
						NIT-									
a)	Find the poles and F	Resid	lues	at ea	ich pc	ole - ((z-1))3							7M
b)	Use Residue theore	m to	find	the r	numbe	er of	zero	s of	the p	olyn	omia	$ z^{10} $	- 62	$z^7 + 3z^3 + 1$ if	
	z < 1														7M
	OR														
	Evaluate $\int_{c} \frac{e^{2z}}{(z-1)(z-1)}$	$\overline{(2)}^{dz}$; who	ere c	is the	e ciro	cle z	=3							14M
					U	NIT-	-V								
	Find the bilinear Tra	nsfor	rmati	on w	hich r	map OR		poir	it (-1	0, 1) into	the p	oir	nts (0, i, 3i).	14M
	Find the image of the region in the z-plane between the lines y=0 and $y = \frac{f}{2}$ under the														
	Transformation $w = a$													<i>L</i>	14M
						*	**								

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.