Code: 4G245

|| B.Tech. II Semester Supplementary Examinations August 2021

Electrical Technology

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. The impedance parameters of a two port network are $Z_{11}=6 ; Z_{12}=Z_{21}=3$; $\mathrm{Z}_{22}=4$. Compute the Y parameters and ABCD parameters and write the Describing equations.

OR

2. Obtain the Conditions for Reciprocity \& Symmetry for Z and Y parameters.

UNIT-II

3. Explain about transient response of series RL circuit using Laplace Transform Approach

OR

4. A series $R C$ circuit with $R=10$ and $C=0.1 F$ has a constant voltage $\mathrm{V}=20 \mathrm{~V}$ applied at $\mathrm{t}=0$ as below .Determine the current I the voltage across the resistor and capacitor

UNIT-III

5. Design constant k high pass filter with characteristic impedance of 600 ohms and to pass frequency above 20 kHz .

OR

6. Relate the characteristics of pass band and stop band filters, explain them.

UNIT-IV

7. a) Write the applications of different types of DC motors?
b) Draw and explain magnetization and load characteristics of $D C$ shunt generator?

OR

8. A 4 pole lap connected DC machine has a flux per pole of 0.05 weber . There are 384 conductors rotating with a speed of 800 rpm in the armature, calculate the EMF in the armature.

UNIT-V

9. Explain the Constructional details of transformer with necessary figures.

OR

10. Explain how the efficiency of a transformer may be estimated from open circuit and short circuit tests.

|| B.Tech. II Semester Supplementary Examinations August 2021

Field Theory and Transmission Lines

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-

1. a) Define co-ordinate system? Explain different types of co-ordinate systems.
b) Write a short note on following: i) Stoke's theorem
ii) Divergence theorem.
2. a) Define Electric potential? Derive the expression for Electric potential.
b) Determine the Divergence and curl vector field as $\mathrm{T}=10 \mathrm{r} \sin _{2} \quad 2 \mathrm{cos}$.

UNIT-II

3. a) Write and explain different kinds of current density's with suitable diagrams and expressions.
b) In a cylindrical conductor of radius 2 mm , the current density varies with distance from the axis according to $\mathrm{J}=10^{3} \mathrm{e}^{-400 r} \mathrm{~A} / \mathrm{m}^{2}$. Find the total current I .

OR
4. a) Derive the expressions for resistance of conductor with uniform cross section
b) If $\mathrm{J}=1 / \mathrm{r}^{3}\left(2 \cos \mathrm{a}_{\mathrm{r}}+\sin\right.$ a) $\mathrm{A} / \mathrm{m}^{2, \text { c }}$ alculate the current passing through
i) A hemispherical shell of radius $20 \mathrm{~cm}, 0 \ll \pi / 2,0 \ll \pi$
ii) A spherical shell of radius 10 cm

UNIT-III

5. a) Derive the force equation due to current element.
b) Write Maxwell's equations for static EM fields.

OR

6. State and prove Biot savart's law ,using Biot savart's law derive an expression for magnetic field strength H due to a finite \&Infinite filamentary conductor carrying a current I and placed along Z -axis at appoint P on Y -axis .hence deduce the magnetic field strength for the length of the conductor extending from $-\infty+\infty$.

UNIT-IV

7. a) Define the wave? List out the different medias and Give the properties of different medias. Write the E\&H equations in those medias.
b) A uniform plane wave propagating in medium has $E=2 e^{-\alpha z} \sin \left(10^{8} t-\beta z\right) a_{y} V / m$. If the medium is characterized by $\epsilon_{r}=1, \mu_{r}=20$ and $\sigma=3 \mathrm{~S} / \mathrm{m}$. Find α, β and H .

OR

8. a) Derive the relation between $\mathrm{E} \& \mathrm{H}$ in a uniform plane wave. find the value of intrinsic impedance of free space.
b) In free space $H=0.1 \cos \left(2 \times 10^{8}-\beta_{z}\right) a_{y} A / m$, calculate i) β, λ and T ii) the time t_{1} takes by the wave to travel a distance of $\lambda / 8$.

UNIT-V

9. a) Define transmission line? And explain different types of transmission line with neat sketches.
b) Discuss about infinite line concept.

OR

10. a) Derive the expression for the input impedance of a transmission line of length.
b) A loss less line of 300Ω is terminated by a load of Z_{R}. if the VSWR at 200 MHZ is 4.48 , and the first $\mathrm{V}_{\text {min }}$ is located at 6 cm from the load .calculate the reflection coefficient and Z_{R}

|| B.Tech. I| Semester Supplementary Examinations August 2021

 Mathematics-III

 Mathematics-III}
(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Symmetry of Beta function $B(m, n)=B(n, m)$
b) Evaluate $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{5}}} d x$ in terms of B function OR
2. a) Find real and imaginary parts $\cot z$
b) Find all the roots of $\sin z=2$

UNIT-II

3. Determine P such that the function $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \operatorname{Tan}^{-1}\left(\frac{p x}{y}\right)$ be an analytic function

OR

4. Find an analytic function whose real part is $e^{-x}[x \sin y-y \cos y]$

UNIT-III

5. Evaluate $\int_{c}\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right) d y$ where $\quad \mathrm{c}$ is the boundary of the region by $y=x^{2}$ and $x=y^{2}$

OR

6. Expand $\log z$ by Taylor's series about $\mathrm{z}=1$.

UNIT-IV

7. a) Find the poles and Residues at each pole $\frac{z e^{z}}{(z-1)^{3}}$
b) Use Residue theorem to find the number of zeros of the polynomial $z^{10}-6 z^{7}+3 z^{3}+1$ if $|z|<1$

OR

8. Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where c is the circle $|z|=3$

UNIT-V
9. Find the bilinear Transformation which maps the point ($-1,0,1$) into the points ($0, i, 3 i$).
10. Find the image of the region in the z-plane between the lines $\mathrm{y}=0$ and $y=\frac{\pi}{2}$ under the Transformation $w=e^{z}$.

