H	lall 1	Ticket Number :		
Code: 4G344				
II B.Tech. II Semester Supplementary Examinations October 2020				
		Field Theory and Transmission Lines		
	Ma	(Electronics and Communication Engineering) x. Marks: 70 Time: 3 Hours	:	
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks))	
		UNIT–I		
1.	a)	Compute the expression for electric field due to line charge distributions?	7M	
	b)	Point charges 5nC and -2nC are located at $(2, 0, 4)$ and $(-3, 0, 5)$,respectively .		
		 i) Determine the force on a 1nC point charge located at (1, -3, 7). ii) Find the electric field E at (1, -3, 7) 	7M	
		OR	7 111	
2.	a)	State and prove Gauss's law .Express Gauss's law in both integral and differential		
		forms. and also discuss the salient features and limitations of Gauss's law	7M	
	b)	Obtain the expression for the field and the potential due to a small electric dipole	714	
		oriented along	7M	
3.	a)	UNIT-II Derive the equation for Continuity equation and relaxation time	7M	
5.	b)	A parallel plate capacitor with free space between the plates is connected to a constant	7 101	
	2)	source an voltage .Determine how electro static energy wE, capacitance C, total charge		
		Q and surface charge density s_{change} as dielectric of $\epsilon_r=2$ is inserted between the plates.	7M	
		OR		
4.	a)	Derive an equation of polarization 'p' in dielectric materials	7M	
	b)	Derive Poisson's and Laplace's equations starting from Gauss's law	7M	
F	2)	UNIT–III		
5.	a)	State and derive Biot-Savart's law? Is Magnetostatic field conservative discuss, hence obtain M.E for divergence of magnetic field?	10M	
	b)	A current element of length 2 cm is located at the origin in free space and carries		
		current 12mA along a_z , a filamentary current of 15 a_z , is located along x=3, y=4. Find the force on a current filament?	4M	
		OR	-111	
6.	a)	What is magnetic energy? Derive energy stored in Magnetostatic field?	8M	
0.	,	Given the magnetic vector? Derivital $V_{vm} = (-\rho^2/4)a_z$ wb/m ² ? Calculate the total magnetic	0	
	0)	flux crossing the surface $\phi = \frac{\omega}{2}$, 1< <2m, 0 <z<5m?< td=""><td>6M</td></z<5m?<>	6M	
7.	a)	For conducting medium derive expressions for $\dot{\alpha}$ and $_{\beta}$?	7M	
	b)	State and prove pointing theorem.	7M	
		OR		
8.	a)	Derive expression for reflection and transmission coefficients of an EM wave when it is incident normally on a dielectric.	7M	
	b)	Distinguish between good conductors and good dielectrics. explain the wave		
		propagation in good dielectrics	7M	
0		UNIT-V Explain how quarter wave transformer is used for load matching and impedance		
9.	a)	measurement of a transmission line?	8M	
	b)	An open wire transmission line having characteristic impedance 600Ω is terminated by a		
	-)	resistive load of 900 Ω . Design single stub matched transmission line.	6M	
		OR		
10.	a)	Why stub matching is used? Explain the double stub matching for transmission lines	7M	
	b)	Explain Smith chart and its applications?	7M	

	Hall	Ticket Number :
		R-14
C	.006	Il B.Tech. II Semester Supplementary Examinations October 2020 Mathematics-III (Common to EEE & ECE)
	Mo	Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)
		UNIT-I
1.	a)	Evaluate $\int_{0}^{1} x^2 \left(\log \frac{1}{x} \right)^3 dx$
	b)	If sin(A + iB)=x+iy, prove that (i) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1, (ii) \frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$
		OR
2.	a)	Show that $\int_0^{\frac{\pi}{2}} \sin^2 \theta \cos^4 \theta d\theta = \frac{\pi}{32}$
	b)	Separate into real and imaginary parts for $f(z) = tanz$
		$\bigcup \text{UNIT-II}$
3.		Prove that the function f(z) defined by $f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ is continuous and
		the C – R equations are satisfied at the origin. Yet $f^1(0)$ does not exist. OR
4.		Find the analytic f(z) = u + iv, if u - v = $\frac{\cos x + \sin x - e^{-y}}{2\cos x - e^{y} - e^{-y}}$ and f($\pi/2$) = 0
5.	a)	UNIT-III State and prove Cauchy's theorem.
	b)	Find the Taylor's expansion of $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about the point $z = i$.
		$z^2 + z$
6.	a)	If $f(z)$ is analytic inside a circle C with centre at a, then for z inside C prove that
		$f(z) = f(a) + f'(a)(z-a) + \frac{f''(a)}{2!}(z-a)^2 + \dots + \frac{f^n(a)}{n!}(z-a)^n + \dots + \dots$
	b)	Derive Cauchy's integral formula.
7.	a)	Determine the poles of the function $\frac{z^2+1}{z^2-2z}$ and the residue at each pole
	b)	Use Rouche's theorem to show that the equation $z^5 + 15z + 1 = 0$ has one root in the disc
		$ z < \frac{3}{2}$ and four roots in the annulus $\frac{3}{2} < z < 2$.
		OR
8.	a)	Evaluate $\int_{c} \frac{z-3}{z^2+2z+5} dz$, where c is the circle $(i) z =1$, $(ii) z+1-i =2$
	b)	state and prove Argument Principle
~		UNIT-V
9.		Find the bilinear transformation which maps the points $z = 1$, i, -1 onto the points $w = i$, 0, -i. Hence find (a) the image of $ z < 1$,
		OR
10.		Show that the transformation effected by an analytic function $w = f(z)$ is conformal at every

10. Show that the transformation effected by an analytic function w = f(z) is conformal at every point of the Z-plane where $f'(z) \neq 0$.