	Hall Ticket	Numb	er ·]											
	ode: 5GC4				<u></u>										F	₹-15
		Tech.	ll Sei	me	ster	Sup	plei	mer	ntary	/ Exc	amin	atic	ons I	_ ∕\arch	า 202	1
						-	-		-		stics					
	Aax. Mark	70			((Com	nmo	n to	CE,	ME	& IT)				Time	: 3 Hours
N	Answer		units	by (choc	sing	one	que	stion	from	n eac	h ur	nit (5	5 x 14 =	-	
						Ũ		*****					•			
							UNIT								N	larks
a)	In a bolt f	factory i	machi	ne A	А, B,	L			e 20%	, 30%	% and	50%	6 of t	he total	l of	
	their outp															
	found to t A (ii) Ma				•		bility	that	it is m	nanuf	acture	ed fro	om (I)	Machi	ine	7M
b)							ng pr	obab	ility d	istrib	ution	:				
	X	0	1		2	3		4	5		6		7			
	P(x)	0	K		2K	2K		3K	K ²	2	2K ²	7K ²	² +K			
	Determir	ne (i) K	(ii)	P(x	<6)	(iii) E		-								7M
a)	The prob	ability d	lensitv	ı f(x) of a	conti	OI NUOI		ndom	varia	able is	s aive	en hv	1		
ω,	f(x) = c	-	•	• • •		00110				, can		- g. r.	511 23			
	Find the					/arian	ice o	f the	distri	butio	n.					7M
b)	-										-					
	3 black b be black.										•	gs ar	nd it i	s found	l to	7M
	DC DIACK.	i ind th		Jabi	iity ti		JNIT			ΠΒαξ	<i>j</i> .					/ 101
a)	•															
	of 6 bulb 100 days	()	least	one	(ii) ç	greate	er tha	an foi	ur (iii) non	e, wi	ll be	haviı	ng a life	e of	7M
b)	•		riable	ha	s a I	Poiss	on d	distrik	outior	n suc	h tha	at F	P(1)=	P(2), fi	ind	/ 101
,	(i) mean												()			7M
							O									
a)	The mea 3 kg. As	-			-				-							
	students	•			•			-							•	
L)	64 kg.	. da a da							-1 - 6 4	0	1		(l-			7M
b)	The follow	-					-			-			-		ber	
	injuries w	as as fo	ollows	:					-				7			
	No. of in		0		1		2 22	3		4		otal 00				
	Freque Fit a Pois		109 tributi		65 o the			-] frequ	encies:	:	7M
							JNIT						•			
a)	0				•				•		•					
	on avera a bus tra	-											-			
	transport	time, i.e	e., the	ave	erage	for 4	0 trip	os, w	as m	•		-			•	
د	the mear										loro	، o ر	10.2	10 4 0	0	7M
b)	The cont 10.0, 10.															
	of all suc						appr	oxim								7M
							O	2								

Page **1** of **2**

Page 2 of 2

samples of size 2 which can be drawn with replacement from this population. Find the population mean and standard deviation, and mean and standard deviation of the sampling distribution of means. 7M b) Find 95% confidence limits for the mean of a normality distributed population from which the following sample was taken 15,17,10,18,16,9,7,11,13,14. 7M UNIT-IV a) Before an increase in excise duty on tea, 800 people out of a sample of 1000 7. were consumers of tea. After the increase in duty, 800 people were consumers of tea in a sample of 1200 persons. Find whether there is significant decrease in the consumption of tea after increase in duty? 7M b) Explain the following 1) Null hypothesis 2) Critical region 3) Type I and Type II errors. 7M OR a) In a city A 20% of a random sample of 900 school boys had a certain slight

6. a) A population consists of the four numbers 3, 7, 11, 15. Consider all possible

- 8. a) In a city A 20% of a random sample of 900 school boys had a certain slight physical defect. In another city B, 18.5% of a random sample of 1600 school boys had the same defect. Is the difference between the proportions significant at 0.05 level of significance?
 - b) The following are the samples of skills. Test the significant difference between the means at 0.05 level

74.4

74.2

74

70.4

73.8

69.2

_

72.2

77.7

74.9

28

29

Sample I

Sample II

71.4

70.8

Sample1

Sample2

		UNIT-V
9.	a)	The theory predicts the proportion of beans, in the four groups: A, B, C and D
		should be 9:3:3:1. In an experiment with 1600 beans the number in the four
		groups were 882, 313, 287 and 113. Does the experiment result support the
		theory.

b) Two random samples drawn from two normal populations have the variable values as below:

30

30

	Campicz	20	00	00	-		1				
Examine whether the samples have been drawn from a normal population having											
the same varia	ance.										

OR

32

33

30 24

31

27

29

28

34

- 10. a) A sample of size 13 gave an estimated population variance of 3.0 while another sample of size 15 gave an estimate of 2.5. Could both samples be from population with same variance?
 - b) In a pre-poll survey out of 1000 urban voters 540 favoured B and the rest A. Out of 1000 rural voters, 620 favoured A and the rest B. Examine if the nature of the area is related to voting performance using the Chi-square test.
 7M

7M

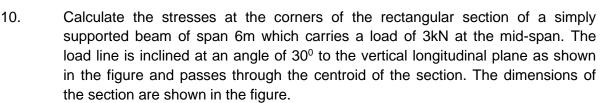
7M

7M

7M

7M

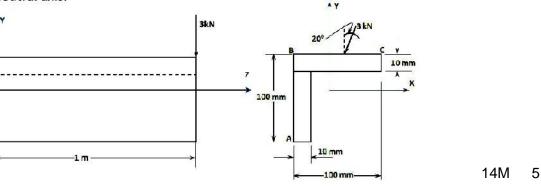
	Hal	I Ticket Number :															_
	Code: 5G641														R-15		
	CUL	B.Tech. S	eme	ste	r Suj	ople	eme	ntar	y Ex	ami	nati	ions	Marc	h 20	021		
	Strength of Materials-II																
	(Civil Engineering)																
	MC	ax. Marks: 70 Answer all five uni	ts by a	cho	osinę	gone		estio ****	n froi	m ec	ιchι	unit (5 x 14		ne: 3 H Marks		5
															Marks	со	Blooms Level
							NIT-I										
1.	a)	A thin cylindrical propressure of 2 N/m									•						
		•									.01111	I, IIIN		oop	7M	1	L3
	b)	stress, longitudinal stress and the maximum shear stress. b) Find the thickness for a tube of Internal diameter 100mm subjected to internal pressure which is 5/8 of the value of the maximum permis															
		circumferential stre															
		when the internal Neglect longitudina			\$ 90	IN/1111	n I	ake		205 1	(IN/III	m- a	πα μ=υ	.29.	7M	1	L3
		0 0				C	DR										
2.		State the assumption					-		-						4M	1	L1
	b)	A thick cylinder of diameter of 200mm maximum stress i diameter Take You	n is su nduce	ubjec ed ir	cted the	to an ma	inte terial	nal p and	oress the	ure c cha	f 80I nge	N/mm in th	n². Find ne exte	the rnal			
		ulameter rake rou	ngsn	louu	iius =				anu	FUE	5011	5 rain	0 = 0.3.		10M	1	L3
3.		A steel shaft is required twisting moment is shaft if the maximulength of 3m of	30% (Im stre	grea ess	ater tl is 70	it 75 han t MPa	he m a. Als	ower iean. so de	Find termi	the ne th	diam ne ar	eter o ngle c	of the s of twist	teel in a			
		90kN/mm ² .		nan.	730	sume	uie	mot	Julus	01	ngiui	ty io	1 31661	a3	14M	2	L3
							DR										
4.		A close-coiled spri torsional stiffness of stress should not e If E=200GPa and G	of 100 xceed)Nm I 120	m/de) MP	gree a wh	ang en si	le of ubjec	twist ted to	an a	e ma axial	ximu twist	m ben of 2.5	ding Nm.			
		the mean radius of						•	•					,	14M	2	L3
_	`			. –	[IIT–II									•	
5.	a) b)	What are the limitat								ماييم	n 2r	n Ion	a with I	aath	4M	3	L1
	b)	Determine the sect ends fixed, if it can diameter of colum crushing strength o	ries ar in is {	n ax 5/8.	ial lo Use	ad of Rar 50 N/	800 800 Nkine	kN. T 's co	he ra	atio c	of inte	ernal	to exte	rnal	10M	3	L3
6.		A hollow cylindrical has a thickness of Calculate the safe Take the crushing as 1/1600. Find als	f 20 n Ioad I streng	mm by F gth c	is 4. Ranki of ma	mn v 5 m ne's ateria	vhoso long form I as	and ula u 550N	is fi Ising I/mm ²	ixed a fao 2 and	at ctor (Rar	the of sa nkine	both ei fety of "s cons	nds. 2.5. tant	14M	3	L3


a) Explain middle third rule. 7. b) A short hollow pier of outer dimensions **1.6** m **x 1.6** m and of inner dimensions 1.0m x 1.0 m supports a vertical load of 2000 kN at a point located on a diagonal 0.5 m from the vertical axis of the pier. Calculate the normal stresses at the 4 corners of the section of the pier, neglecting its self-weight. 10M Δ

OR

8. In a rectangular section of dimensions 200mm x 100mm, a load of 80kN is applied 40mm and 20mm off the centroid parallel to the 200mm and 100mm sides, respectively. Find the stresses at the four corners. What is the additional compressive load that can be placed at the centroid of the section to make the tensile stress zero?

UNIT-V


9. A cantilever of angle section is 1m long and is fixed at one end, while it is subjected to a load of 3kN at the free end at 20° to the vertical. Calculate the bending stresses at A,B and C and also the position of neutral axis.

OR

L3 14M 5

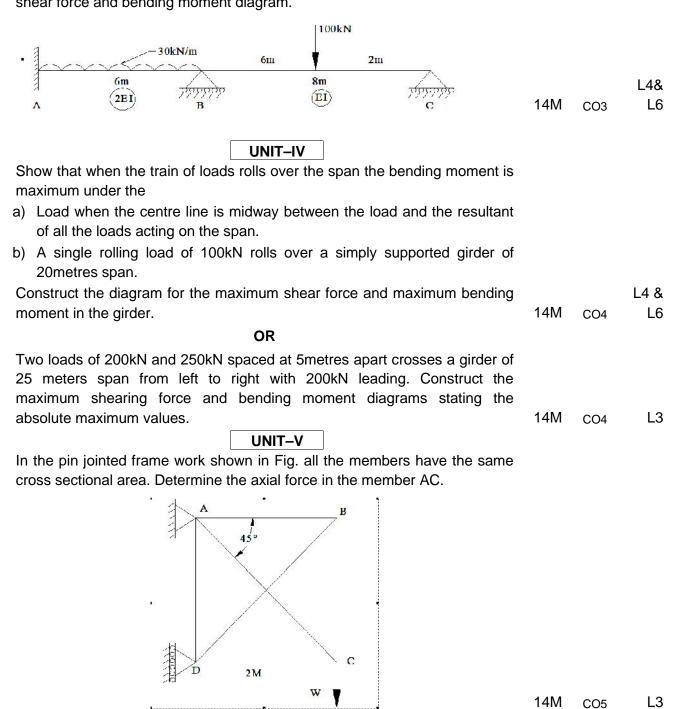
UNIT-IV

4M 4 L1

L3

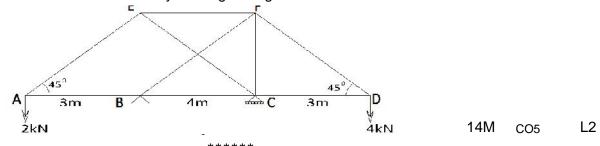
L3 14M 4

L3


	Hall Ticket Number :			
	Code: 5G643		R-15	
	Il B.Tech. II Semester Supplementary Examinations Marc Structural Analysis-I (Civil Engineering)	:h 202	21	
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 ********	-	e: 3 Hc 1arks)	ours
		Marks	со	Blooms Level
1.	UNIT–I Interpret analysis result of given fixed beam subjected to the partial UDL as shown in figure. Construct the shear force and bending moment for the same 30kN/m			
				L4&
	2m 2m OR	14M	CO1	L6
2. a)				
	central point load?	9M	CO1	L3
b	Determine the deflection of a fixed beam of span 5m subjected to UDL of 20kN/m? Take EI= 15000kNm ² .	5M	CO1	L3
		oin	001	20
3.	Analyse and Interpret the results of a continuous beam shown in the figure and construct the SFD and BMD for the same.			
	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ &$	14M	CO2	L4& L6
	OR			
4. a)	 State the degree of indeterminancy for the continuous beam given below i. Three supports-simply supported at the ends 			
	 ii. End supports simply supported at the ends iii. End support is fixed and the other two are simply supported. iii. A four span continuous beam with three interior supports, an interior hinge and with ends fixed. 			
	iv. A span continuous beam with an internal hinge in every span.	4M	CO2	L2
b)	A simply supported beam is of 5m span and is subjected to a central concentrated load. The deflection beneath the load is 400mm. if the ends are fully fixed then what will be the deflection?	10M	CO2	L3
5.	Analyse the continuous beam by slope deflection method. Construct SFD and BMD for the same.			
	$ \begin{array}{c} 16 \text{ kN} \\ 2 \text{ m} \\ 4 \text{ m} \\ 4 \text{ m} \\ 6 m$	14M	CO3	L4 & L6

6. Analyze the continuous beam by moment distribution method. Construct the shear force and bending moment diagram.

7.


8.

9.

10. Distinguish between static and kinematic indeterminacy? Determine the static and kinematic indeterminacy of the given figures

OR

