	Н	all Ticket Number :													
													R-1	5	
	Co	de: 5G644	mo	ctor	c Si ii	nnla	m	ontar		amir	nation		ct 2021		
		ll B.Tech. II Se			din	g Pl	an		& C	Draw		is Augu	SI 2021		
	Μ	lax. Marks: 70				·		*****	-				Time: 3	Hours	5
	PART-A Answer <i>all Three</i> units by choosing one question from each unit (3 x 14 = 42 Marks)														
		Answer all Three uni	its b	y ch	ioosi	ng or	ne q	uestio	on fro	om eao	ch unit	: (3 x 14 :	= 42 Mark	(S)	Blooms
													Marks	CO	Level
						UNIT	- I								
1.	a)	Explain in detail the residential building?	fact	ors	to be	e cor	nsid	ered	for s	electic	on of a	ı site for	a 7M	CO1	L4
	b)	On what consideration	s, th	ne gr	oupi	ing of	var	ious u	inits i	n resid	dential	buildings	is		
		made?											7M	CO1	L1
						OF	र								
2.		Classify the buildings b	base	ed or		upan	су а	and typ	be of	const	ruction		14M	CO1	L2
					l		-11								
3.	a)	List out different purpo	ses	of ro	oms	s in a	resi	dentia	l buil	ding?			7M	CO2	L1,L4
	b)	Give the standard dime	ensi	ons	for th	ne fol	lowi	ng roc	oms c	of a res	sidentia	al building			
		(i) Veranda (ii) Bed ı	oon	n	(iii) S	Sick r	oon	า					7M	CO2	L1,L2
						OF	र								
4.	a)	Write the importance a	nd r	nece	ssity	in pl	anni	ing of	indus	strial b	uilding	s?	7M	CO2	L1,L2
	b)	Explain the principle of	ⁱ pla	nnin	gał	nospit	al.						7M	CO2	L2
					-										
5.		Distinguish between P	ERT	and		JNIT- M in (OF	deta	ıil.					14M	CO3	L4
6.		A project consists of 9	acti	vities	s, the	e deta	ails a	are giv	/en b	elow.					
		(i) Draw network diag	gran	٦.											
		(ii) Find out the critica	al pa	th a	nd p	roject	dur	ation.							
		(iii) Compute earliest											nd		
		finish time. Also ca	0.222								endent	float.			
		Activity	A	B	C	D	E	F	G	H					
		Predecessor	-	A	0.00	B,C	A	D,E	C	F,G	H				
		Duration(in days)	5	9	7	4	8	14	12	6	8	l	14M	CO3	1314

14M CO3 L3 ,L4

PART-B

Answer any one question from the following units (1 x 28 = 28 Marks)

Draw plans of Flemish bond with all the details.

14M CO4 L3

 b) Draw elevation and sectional plan of 0.partly panelled and partly glazed door of size 1200X2000 mm. size.
14M CO4 L3

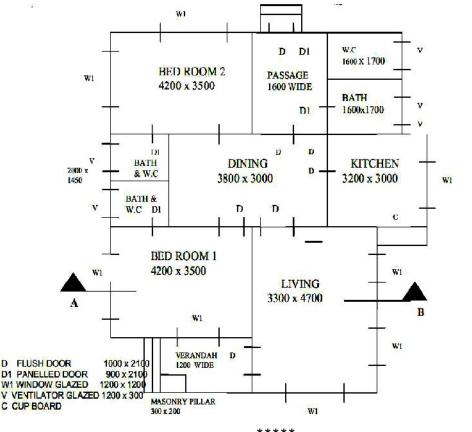
OR

UNIT–V

 The line sketch of the plan of a residential building is shown in figure below. Draw:

(a) A neat dimensioned plan.

7. a)


(b) Sectional elevation along AB, to a suitable scale, using the following specification.

Specifications: Foundations: C.C 1:4:8 800 mm wide and 300 mm thick. Footings: Rubble stone masonry: 600 mm x 500 mm.

Basement: Coursed rubble masonry: 400 mm wide and 700 mm high.

Superstructure: Brickwork in C.M 1.5:300 mm wide and 300 mm high.

R.O.C roofing: 100mm thick.

28M CO5 L3

]				
		Hall Ticket Number :								R-15			
	C	Code: 5G642											
	II B.Tech. II Semester Supplementary Examinations August 2021												
	Hydraulics and Hydraulic Machinery												
	(Civil Engineering) Max. Marks: 70 Time: 3 Hours												
		Answer any five full questions by choosi	-	•	Jestic	on fro	om e	ach	unit (t				
			****	****									
			UNI	T–I									
1.		Define											
		(a) Laminar Boundary Layer (δ_{lam}) (k) Tur	bulen	it Bou	undai	y La	yer (d	Stur)				
		(c) Laminar sub-layer(δ^{1}) (c)	d) Bou	undar	y Lay	/er T	hickn	ess					
			O	२									
2.		Find the displacement thickness, the mor						•••	thickne	ess for the			
		velocity distribution in the boundary layer	-		= U/נ	2(y/	'δ)-()	// δ) ²					
			UNI										
3.		Prove that $B+2zy/2=y 1+z^2$ is the requi					•						
		economical or most efficient (where sid	ie sic	pe is	5 1:Z	, Del	otn=y	/, В=	Bottom	i width of the			
			O	2									
4.		What do you understand by	0.	•									
		a) Steady and Unsteady flow	b) Ui	niforn	n and	Non	Unif	orm f	flow				
		c) Laminar flow and Turbulent flow	d) Su	ıb-crit	ical fl	ow, ci	itical	flow a	and sup	er critical flow			
5.		how that the force exerted by a jet of wat	er on	an ind	clined	l fixe	d pla	te in	the dire	ection of the			
		jet is given by $F_x = aV^2 sin^2$											
		Where $a = area of the jet$, V=velocity of	the je	t and	=ir	Iclina	tion	of the	e plate v	with the jet			
			O	-									
6.		Find the force exerted by a jet of water or	n an u	nsym	metr	ical r	novir	ig cu	rved pla	ate when jet			
		strikes tangentially at one of the tips.		- n/	٦								
7	-)	What do you meen by green head, not be				w of	turbi		Voloio	the different			
7.	a)	What do you mean by gross head, net he type of efficiency of a turbine?	au ai		cient	y OI	lurbii	Ie : c	spiain				
	b)	Explain clearly the following terms as the	y are	applie	ed to	a pe	lton v	vhee	l:				
		(i) Gross Head (ii) Net Head											
			O	2									
8.	a)												
	b)	Define efficiency of draft tube?			-								
			UNI										
9.		Explain briefly with neat sketches, any tw	o of th	ne fol	lowin	g typ	es of	casi	ng				
		(i) Volute casing											
		(ii) Vortex casing											
		(iii) Casing with guide blades/vanes	~	5									
			O	۲				, .					

10. a) How are hydropower plants classified? Explain any one of the type of classification

b) Write about surge tank? Explain why a surge tank is needed in a hydropower plant set up?

	На	II Ticket Number :										
L	Cor	de: 5GC42					R-15					
		II B.Tech. II Semester S	upplemer	ntary Exami	nations	August	2021					
				& Statistics		/ (0905)	2021					
			-	CE, ME and I								
	Μ	ax. Marks: 70		-	,		Time: 3 Ho	Urs				
	A	nswer any five full questions by c	choosing one	•	om each	unit (5x1	4 = 70 Mark	<s)<="" td=""></s>				
			4.4.4.4.4.									
			UNIT-	1								
1.	a)	a) Define the following (i) Sample Space (ii) event (iii) Outcome (iv) Probability										
	b)	Two marbles are drawn in succ	cession from	a box contai	ning 10 r	ed, 30 wł	nite, 20 blue	9				
	,	and15 orange marbles, with re-	eplacement	being made	after ead	ch drawin	g. Find the	÷				
		probability that (i) both are white (and second is	white.			6M				
0	,	Ctate and prove Addition the area	OR or probabilit	he far two as a rest				014				
2.	a)	State and prove Addition theorem	-	-				8M				
	b)	If two dice are throw, Find the pro			10			6M				
2		A random variable X has the follo	UNIT-I									
3.		X 0 1	<u> </u>	4 5	6	7						
				4 5 2K 3K	6 K ²	7K ² +K						
		P(X) 0 K				/ N ⁻ +N						
		Find the value of K , (ii)Evaluate		(III) Evaluate p	p(x < 5)			14M				
			OR				<u>.</u> .					
4.		The mean and variance of a bino $P(x = 1)$ and $P(x > 2)$	mial variable	X with param	eters n an	id p are 16	3 and 8. Find					
		P(x = 1) and P(x > 2)						14M				
5.		A population consists of the four	UNIT-I		ider all no	osihla sar	moles of size	2				
5.		2 which can be drawn with replace			•		•					
		standard deviation, and mean and		• •		• •						
			OR									
6.		It is desired to estimate the mean					•					
		will first require repairs. If it can				-						
		that one will be able to assert wi 10 hours.	th 90% contic	dence that the	sample i	mean is o	n by at mos	t 14M				
			UNIT-I	V				1 1101				
7.	a)	A sample of 64 students has a			n this be	regarded	as a sample	Э				
	,	from a population with mean weig	•	•		•	·	7M				
	b)	In a big city, 325 men out of 60	00 men were	found to be	smokers.	Thus this	s information	۱				
		supports the concussion that the		en in the city a	are smoke	ers.		7M				
			OR									
8.		According to the norms establis		•		•						
		years old have an average height 73.2 ($\sim = 73.2$) with standard deviation of 8.6($\dagger = 8.6$).										
		If 45 ($n = 45$) members randomly selected of that age average 76.7($\overline{x} = 76.7$). Test the null hypothesis ~ = 73.2, against the alternative hypothesis ~ > 73.2 at the 0.01 level if										
		significance.		live hypothes	15 ~ > /.	o.∠at the	0.01 level i					
		significance.		1				14M				
9.		In an investigation on the machin	UNIT-\		a reculte ·	are obtain	ed					
9.			No. of units	-	0	of defective						
		Machine I	37	•	110.0	17						
		Machine II	45			22						
		Test whether there is any signification			chines at	= 0.05		14M				
			OR									
10.		4 coins were tossed 160 times an	nd the followin	ng results were		i ,						
		No, of Heads 0	1	2	3		4					
		Frequency 17	52	54	31		6					

Frequency175254316Under the assumption that coins are unbiased, find the expected frequencies of 0,1,2,3,4heads and test the googness of fit for=0.05

14M

	Hall Ticket Number :						_					
	Code: 5G643					R-15						
	II B.Tech. II Semester Sup	plementc	ary Exc	iminati	ons Auqu		_					
	Structural Analysis-I											
	(Civil Engineering)											
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)											
	Answer dry rive foir questions by cho	*******	•	1 IIOIII C		5X14 - 70 Marks)					
		UNIT–I										
1.	Derive the equation for a Fixed beam	carrying UE	DL over	the entire	e span with	neat sketch.	14M					
		OR										
2.	A fixed beam AB of length 6m carrie 2m and 4m from the left end of A.	•										
	supports. Draw B.M and S.F diagram			momon			14M					
		UNIT–II										
3.	A Continuous beam ABC covers two carrying UDL of 6KN/m and 10KN/n											
	find the supports moments at A, B &	•	iy. ii dite			mply supported,	14M					
		OR										
4.	A continuous beam ABC consists on carrying a distributed load of 40kN/r Find the support moments and reacting the support moments are supported to support moments and reacting the support moments are supported to support moments and reacting the support moments are supported to supported to support moments are supported to supp	n. the end A		•								
40kN/m												
	í þ		\sim	\sim	L,							
	4	<u>m</u> ↑	4	m	₽							
	1	U	_		U		14M					
		UNIT–III										
5.	Explain step by step procedure of Mc		oution m	ethod wi	th suitable	example.	14M					
0	A continuous hoom APCD consists of	OR f three epop	andla	adad aa	chown in fi	aura End A 8 D						
6.	A continuous beam ABCD consists o are fixed. Determine the bending more	•			SHOWITIN	guie. Enu A & D						
	2KN/m	5 KN			8 KN							
	1000				•	-K						
	A GM B	3M	2M	C 2.5M	2.5M	D						
			٦	22			14M					
7.	a) What are influence lines?	UNIT–IV					<u> </u>					
7.	b) Derive the influence line diagram for	an simply su	pportec	l beam w	ith neat sk	etch	4M 10M					
		OR										
0	In a simply supported beam AB of sp	an 20m dat	ormino	the may	imum bond	ing moment and						

In a simply supported beam AB of span 20m, determine the maximum bending moment and shear forces at a section 5m from A, due to the passage of a UDL of intensity 20KN/m, longer than the span.

9. Derive Castigliano's first theorem with neat sketch.

OR

10. Find the deflection at the free end of a cantilever of length L carrying a uniform distributed load of W per unit run over the whole span. Assume uniform flexural rigidity. 14M

14M