	Hall	Ticket Number :	7
Į	Code	R-15	
	Couc	Il B.Tech. Il Semester Supplementary Examinations February 2022 Complex Variables & Special Functions (Common to EEE & ECE)	
		x. Marks: 70 Time: 3 Hours ver any five full questions by choosing one question from each unit (5x14 = 70 Marks) ***********************************	
1.	,	Symmetry of Beta function B(m, n)=B(n, m)	7M
	b)	Evaluate $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^5}} dx$ in terms of B function	7M
		OR	
2.		Show that $\Gamma(n) = \int_0^1 \left(\log \frac{1}{x}\right)^{n-1} dx$, $n > 0$	7M
	b)	Evaluate $\int_{0}^{1} \sqrt{\cot \pi} d\pi$	7M
3.	a)	Chow that $C(\cdot)$ = 2 is not analytic annulation the complex plane	7M
0.	b)	Show that $f(z) = z + 2z$ is not analytic anywhere in the complex plane. Determine whether the function $2xy + i(x^2 - y^2)$ is analytic.	7 IVI 7M
	S)	OR	/ IVI
4.		Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left \operatorname{Re} al \ f(z) \right ^2 = 2 \left f'(z) \right ^2$ where $w = f(z)$ is analytic.	14M
5.		Evaluate $\int_{c} \frac{\log z}{(z-1)^3} dz$ where $c: z-1 = \frac{1}{2}$ using Cauchy's integral formula	14M
6.		OR Expand $Log z$ by Taylor's series about z=1.	14M
7.		Find the poles of the function $\frac{z+1}{z^2(z-2)}$ and Residues at the poles	14M
		OR	
8.	a)	Find the poles and Residues at each pole $\frac{ze^z}{(z-1)^3}$	7M
	b)	Use Residue theorem to find the number of zeros of the polynomial $z^{10}-6z^7+3z^3+1$ if $ z <1$	7M
		UNIT-V	
9.		Show that the image of the hyperbola $x^2 - y^2 = 1$ under the Transformation $w = \frac{1}{z}$	14M
		is the Lemniscate $\dots^2 = \cos 2W$	
10.		Show that the function $w = \frac{4}{z}$ transforms the straight line x=c in the z-plane into a	14M
		circle in the w-plane.	

	H	all Ticket Number :	
		R-15	
	Co	ode: 5G244 II B.Tech. II Semester Supplementary Examinations February 2022	1
		Linear Control Systems	
		(Electrical and Electronics Engineering)	
	Μ	ax. Marks: 70 Time: 3 Hours	
	Ar	nswer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Marks})$	
		******	Marks
		UNIT-I	
1.	a)	Explain the effect of feedback in reducing parameter variations.	7M
	b)	Derive an expression for the transfer function of a Field controlled DC servo motor.	7M
		OR	
2.	a)	Explain the properties of Signal Flow Graph	7M
	b)	Derive an expression for the transfer function of an AC servo motor	7M
		UNIT-II	
3.	a)	Determine the underdamped response of second order control system subjected to unit	014
	ل ا	step input function	8M
	b)	Obtain the rise time, peak time, maximum peak overshoot and settling time of the unit	
		step response of a closed loop control system given by $G(s) = \frac{36}{S^2 + 2S + 36}$	6M
		OR	
4.	a)	Define Type & Order of a System with examples.	4M
	b)	Explain about time domain specifications	10M
		UNIT-III	
5.	a)	Explain the construction rules for root locus technique.	7M
	b)	Test the stability of the system with the following characteristic equation by Routh's test s 6+2s5+8s4+20s2+16s+16=0	7M
		OR	
6.		Sketch the root locus of the system whose open loop transfer function is	
		$G(s) = \frac{K}{S(S+2)(S+4)}$. Find the value of K so that the damping ratio of the closed loop	14M
		system is 0.5	
		UNIT-IV	
7.		Explain bode plots of basic factors of a transfer function.	14M
		OR	
8.		Sketch the Bode plot and find the Phase margin and gain margin for the system	
		$G(s)H(S) = \frac{10S(3+S)}{S(S+2)(S^2+S+2)}$	14M
		$S(S)H(S) = \frac{1}{S(S+2)(S^2+S+2)}$	
		UNIT-V	
9.	a)	What is state transition matrix? State and prove its properties.	7M
	b)	Derive the expression for transfer function of State Model.	7M
		OR	
10.		Explain design of the basic lead compensator using Bode plot.	14M